1
|
Martín-Villanueva S, Gutiérrez G, Kressler D, de la Cruz J. Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity? Int J Mol Sci 2021; 22:ijms22094359. [PMID: 33921964 PMCID: PMC8122580 DOI: 10.3390/ijms22094359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41009 Seville, Spain;
- Departamento de Genética, Universidad de Sevilla, 41013 Seville, Spain;
- Correspondence: (D.K.); (J.d.l.C.); Tel.: +41-26-300-86-45 (D.K.); +34-955-923-126 (J.d.l.C.)
| |
Collapse
|
2
|
Li R, Deed RC. Reciprocal hemizygosity analysis reveals that the Saccharomyces cerevisiae CGI121 gene affects lag time duration in synthetic grape must. G3-GENES GENOMES GENETICS 2021; 11:6157830. [PMID: 33681985 PMCID: PMC8759811 DOI: 10.1093/g3journal/jkab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
It is standard practice to ferment white wines at low temperatures (10–18°C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on Chr. VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5°C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidates ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5°C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on Chr. XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.
Collapse
Affiliation(s)
- Runze Li
- School of Chemical Sciences and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Chen Y, Chen S, Li K, Zhang Y, Huang X, Li T, Wu S, Wang Y, Carey LB, Qian W. Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells. Cell Syst 2019; 9:129-142.e5. [PMID: 31351919 DOI: 10.1016/j.cels.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/27/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022]
Abstract
Cells with complex aneuploidies display a wide range of phenotypic abnormalities. However, the molecular basis for this has been mainly studied in trisomic (2n + 1) and disomic (n + 1) cells. To determine how karyotype affects proliferation in cells with complex aneuploidies, we generated 92 2n + x yeast strains in which each diploid cell has between 3 and 12 extra chromosomes. Genome-wide and, for individual protein complexes, proliferation defects are caused by the presence of protein complexes in which all subunits are balanced at the 3-copy level. Proteomics revealed that over 50% of 3-copy members of imbalanced complexes were expressed at only 2n protein levels, whereas members of complexes in which all subunits are stoichiometrically balanced at 3 copies per cell had 3n protein levels. We validated this finding using orthogonal datasets from yeast and from human cancers. Taken together, our study provides an explanation of how aneuploidy affects phenotype.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuliang Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain; Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
An H, Harper JW. Ribosome Abundance Control Via the Ubiquitin-Proteasome System and Autophagy. J Mol Biol 2019; 432:170-184. [PMID: 31195016 DOI: 10.1016/j.jmb.2019.06.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Ribosomes are central to the life of a cell, as they translate the genetic code into the amino acid language of proteins. Moreover, ribosomal abundance within the cell is coordinated with protein production required for cell function or processes such as cell division. As such, it is not surprising that these elegant machines are both highly regulated at the level of both their output of newly translated proteins but also at the level of ribosomal protein expression, ribosome assembly, and ribosome turnover. In this review, we focus on mechanisms that regulate ribosome abundance through both the ubiquitin-proteasome system and forms of autophagy referred to as "ribophagy." We discussed mechanisms employed in both yeast and mammalian cells, including the various machineries that are important for recognition and degradation of ribosomal components. In addition, we discussed controversies in the field and how the development of new approaches for examining flux through the proteasomal and autophagic systems in the context of a systematic inventory of ribosomal components is necessary to fully understand how ribosome abundance is controlled under various physiological conditions.
Collapse
Affiliation(s)
- Heeseon An
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Tye BW, Commins N, Ryazanova LV, Wühr M, Springer M, Pincus D, Churchman LS. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife 2019; 8:43002. [PMID: 30843788 PMCID: PMC6453566 DOI: 10.7554/elife.43002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 12/31/2022] Open
Abstract
To achieve maximal growth, cells must manage a massive economy of ribosomal proteins (r-proteins) and RNAs (rRNAs) to produce thousands of ribosomes every minute. Although ribosomes are essential in all cells, natural disruptions to ribosome biogenesis lead to heterogeneous phenotypes. Here, we model these perturbations in Saccharomyces cerevisiae and show that challenges to ribosome biogenesis result in acute loss of proteostasis. Imbalances in the synthesis of r-proteins and rRNAs lead to the rapid aggregation of newly synthesized orphan r-proteins and compromise essential cellular processes, which cells alleviate by activating proteostasis genes. Exogenously bolstering the proteostasis network increases cellular fitness in the face of challenges to ribosome assembly, demonstrating the direct contribution of orphan r-proteins to cellular phenotypes. We propose that ribosome assembly is a key vulnerability of proteostasis maintenance in proliferating cells that may be compromised by diverse genetic, environmental, and xenobiotic perturbations that generate orphan r-proteins. Cells are made up of thousands of different proteins that perform unique roles required for life. To create all of these proteins, cells use machines called ribosomes that are partly formed of elements known as r-proteins. When cells grow and divide, the ribosomes have to make copies of themselves through a process called ribosome biogenesis. Although all cells need ribosomes, certain types of cells are especially sensitive to events that interfere with ribosome biogenesis. For example, patients that have mutations in genes needed for ribosome biogenesis produce fewer red blood cells, but their other cells and tissues are mostly healthy. It is not clear why some cells are more sensitive than others. Ribosome biogenesis is very similar between different organisms, so researchers often use budding yeast as a model to study the process. Here, Tye et al. used genetic and chemical tools to interfere with ribosome biogenesis on short time scales, which made it possible to detect early on what was going wrong in the cells. The experiments found that when ribosome biogenesis was disrupted, r-proteins that were waiting to be assembled into ribosomes quickly stuck to one another and formed clumps that reduced the ability of the yeast cells to grow. The cells responded by switching on a protein called Hsf1, which restored their ability to grow. Yeast cells that were growing quickly, and therefore making more ribosomes, were more sensitive to abnormal ribosome biogenesis than slow-growing cells. These results indicate that how actively a cell is growing, and its ability to cope with r-proteins sticking together, may in part explain why certain cells are more vulnerable to events that interfere with ribosome biogenesis. Since human cells also have Hsf1, future experiments could investigate whether turning it on might also protect fast-growing human cells from such events.
Collapse
Affiliation(s)
- Blake W Tye
- Department of Genetics, Harvard Medical School, Boston, United States.,Program in Chemical Biology, Harvard University, Cambridge, United States
| | - Nicoletta Commins
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Lillia V Ryazanova
- Department of Molecular Biology, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States.,Center for Physics of Evolving Systems, University of Chicago, Chicago, United States
| | | |
Collapse
|
6
|
Eisenberg AR, Higdon A, Keskin A, Hodapp S, Jovanovic M, Brar GA. Precise Post-translational Tuning Occurs for Most Protein Complex Components during Meiosis. Cell Rep 2018; 25:3603-3617.e2. [PMID: 30590036 PMCID: PMC6328264 DOI: 10.1016/j.celrep.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Protein degradation is known to be a key component of expression regulation for individual genes, but its global impact on gene expression has been difficult to determine. We analyzed a parallel gene expression dataset of yeast meiotic differentiation, identifying instances of coordinated protein-level decreases to identify new cases of regulated meiotic protein degradation, including of ribosomes and targets of the meiosis-specific anaphase-promoting complex adaptor Ama1. Comparison of protein and translation measurements over time also revealed that, although meiotic cells are capable of synthesizing protein complex members at precisely matched levels, they typically do not. Instead, the members of most protein complexes are synthesized imprecisely, but their protein levels are matched, indicating that wild-type eukaryotic cells routinely use post-translational adjustment of protein complex partner levels to achieve proper stoichiometry. Outlier cases, in which specific complex components show divergent protein-level trends, suggest timed regulation of these complexes.
Collapse
Affiliation(s)
- Amy Rose Eisenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrea Higdon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Abdurrahman Keskin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Cheng Z, Mugler CF, Keskin A, Hodapp S, Chan LYL, Weis K, Mertins P, Regev A, Jovanovic M, Brar GA. Small and Large Ribosomal Subunit Deficiencies Lead to Distinct Gene Expression Signatures that Reflect Cellular Growth Rate. Mol Cell 2018; 73:36-47.e10. [PMID: 30503772 DOI: 10.1016/j.molcel.2018.10.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Levels of the ribosome, the conserved molecular machine that mediates translation, are tightly linked to cellular growth rate. In humans, ribosomopathies are diseases associated with cell-type-specific pathologies and reduced ribosomal protein (RP) levels. Because gene expression defects resulting from ribosome deficiency have not yet been experimentally defined, we systematically probed mRNA, translation, and protein signatures that were either unlinked from or linked to cellular growth rate in RP-deficient yeast cells. Ribosome deficiency was associated with altered translation of gene subclasses, and profound general secondary effects of RP loss on the spectrum of cellular mRNAs were seen. Among these effects, growth-defective 60S mutants increased synthesis of proteins involved in proteasome-mediated degradation, whereas 40S mutants accumulated mature 60S subunits and increased translation of ribosome biogenesis genes. These distinct signatures of protein synthesis suggest intriguing and currently mysterious differences in the cellular consequences of deficiency for small and large ribosomal subunits.
Collapse
MESH Headings
- Cell Proliferation
- Gene Expression Regulation, Fungal
- Mutation
- Protein Processing, Post-Translational
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
- Transcriptome
Collapse
Affiliation(s)
- Ze Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher Frederick Mugler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Institute of Biochemistry, ETH, 8093 Zurich, Switzerland
| | - Abdurrahman Keskin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Leon Yen-Lee Chan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Institute of Biochemistry, ETH, 8093 Zurich, Switzerland
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, ETH, 8093 Zurich, Switzerland
| | - Philipp Mertins
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Carlson T, Christian N, Bonner JJ. A role for RNA metabolism in inducing the heat shock response. Gene Expr 2018; 7:283-91. [PMID: 10440229 PMCID: PMC6174669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Yeast HSF is constitutively trimeric and DNA bound. Heat shock is thought to activate HSF by inducing a conformational change. We have developed an assay in which we can follow a conformational change of HSF that correlates with activity and thus appears to be the active conformation. This conformational change requires two HSF trimers bound cooperatively to DNA. The conformational change can be induced in whole cell extracts, and is thus amenable to biochemical analysis. We have purified a factor that triggers the conformational change. The factor is sensitive to dialysis, insensitive to NEM, and is not extractable by phenol. It is small, and apparently not a peptide. Mass spectroscopy identifies a novel guanine nucleotide that tracks with activity on columns. This novel nucleotide, purchased from Sigma, induces the conformational change (although this does not prove the identity of the activating factor unambiguously, because Sigma's preparation is contaminated with other compounds). What is the source of this nucleotide in cells? Activity can be generated by treating extracts with ribonuclease; this implicates RNA degradation as a source of HSF-activating activity. The heat shock response is primarily responsible for monitoring the levels of protein chaperones; how can RNA degradation be involved? Synthetic lethal interactions link HSF activity to ribosome biogenesis, suggesting a possible model. Ribosomal proteins are produced in large quantities, and in excess of rRNA; unassembled r-proteins are rapidly degraded (t1/2 approximately 3 min). Unassembled r-proteins aggregate readily. It is likely that unassembled r-proteins represent a major target of chaperones in vivo, and for proteasome-dependent degradation. Interference with rRNA processing (e.g., by heat shock) requires hsp70s to handle the aggregation-prone r-proteins, and proteasome proteins to help degrade the unassembled r-proteins before they aggregate. A nucleotide signal could be generated from the degradation products of the rRNA itself.
Collapse
Affiliation(s)
- Tage Carlson
- *Departments of Biology, Indiana University, Bloomington, IN 47405
| | - Noah Christian
- †Departments of Chemistry, Indiana University, Bloomington, IN 47405
| | - J. José Bonner
- *Departments of Biology, Indiana University, Bloomington, IN 47405
- Address correspondence to J. José Bonner, Department of Biology, Indiana University, 142 Jordan Hall, 1001 E. 3rd Street, Bloomington, IN 47405-3700. Tel: (812) 855-7074; Fax: (812) 855-6705; E-mail:
| |
Collapse
|
9
|
Abstract
The billions of proteins inside a eukaryotic cell are organized among dozens of sub-cellular compartments, within which they are further organized into protein complexes. The maintenance of both levels of organization is crucial for normal cellular function. Newly made proteins that fail to be segregated to the correct compartment or assembled into the appropriate complex are defined as orphans. In this review, we discuss the challenges faced by a cell of minimizing orphaned proteins, the quality control systems that recognize orphans, and the consequences of excess orphans for protein homeostasis and disease.
Collapse
|
10
|
Kale A, Ji Z, Kiparaki M, Blanco J, Rimesso G, Flibotte S, Baker NE. Ribosomal Protein S12e Has a Distinct Function in Cell Competition. Dev Cell 2018; 44:42-55.e4. [PMID: 29316439 DOI: 10.1016/j.devcel.2017.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/03/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Wild-type Drosophila cells can remove cells heterozygous for ribosomal protein mutations (known as "Minute" mutant cells) from genetic mosaics, a process termed cell competition. The ribosomal protein S12 was unusual because cells heterozygous for rpS12 mutations were not competed by wild-type, and a viable missense mutation in rpS12 protected Minute cells from cell competition with wild-type cells. Furthermore, cells with Minute mutations were induced to compete with one another by altering the gene dose of rpS12, eliminating cells with more rpS12 than their neighbors. Thus RpS12 has a special function in cell competition that defines the competitiveness of cells. We propose that cell competition between wild-type and Minute cells is initiated by a signal of ribosomal protein haploinsufficiency mediated by RpS12. Since competition between cells expressing different levels of Myc did not require RpS12, other kinds of cell competition may be initiated differently.
Collapse
Affiliation(s)
- Abhijit Kale
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhejun Ji
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jorge Blanco
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Gonçalves E, Fragoulis A, Garcia-Alonso L, Cramer T, Saez-Rodriguez J, Beltrao P. Widespread Post-transcriptional Attenuation of Genomic Copy-Number Variation in Cancer. Cell Syst 2017; 5:386-398.e4. [PMID: 29032074 PMCID: PMC5660600 DOI: 10.1016/j.cels.2017.08.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022]
Abstract
Copy-number variations (CNVs) are ubiquitous in cancer and often act as driver events, but the effects of CNVs on the proteome of tumors are poorly understood. Here, we analyze recently published genomics, transcriptomics, and proteomics datasets made available by CPTAC and TCGA consortia on 282 breast, ovarian, and colorectal tumor samples to investigate the impact of CNVs in the proteomes of these cells. We found that CNVs are buffered by post-transcriptional regulation in 23%-33% of proteins that are significantly enriched in protein complex members. Our analyses show that complex subunits are highly co-regulated, and some act as rate-limiting steps of complex assembly, as their depletion induces decreased abundance of other complex members. We identified 48 such rate-limiting interactions and experimentally confirmed our predictions on the interactions of AP3B1 with AP3M1 and GTF2E2 with GTF2E1. This study highlights the importance of post-transcriptional mechanisms in cancer that allow cells to cope with their altered genomes.
Collapse
Affiliation(s)
- Emanuel Gonçalves
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Athanassios Fragoulis
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Luz Garcia-Alonso
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Thorsten Cramer
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Germany and the Netherlands
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, 52057 Aachen, Germany.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
12
|
Harper JW, Bennett EJ. Proteome complexity and the forces that drive proteome imbalance. Nature 2016; 537:328-38. [PMID: 27629639 DOI: 10.1038/nature19947] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is a complex microcosm of structural and regulatory networks that requires continuous surveillance and modification to meet the dynamic needs of the cell. It is therefore crucial that the protein flux of the cell remains in balance to ensure proper cell function. Genetic alterations that range from chromosome imbalance to oncogene activation can affect the speed, fidelity and capacity of protein biogenesis and degradation systems, which often results in proteome imbalance. An improved understanding of the causes and consequences of proteome imbalance is helping to reveal how these systems can be targeted to treat diseases such as cancer.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies RJ. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 2016; 5. [PMID: 27552055 PMCID: PMC5026473 DOI: 10.7554/elife.19105] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes.
Collapse
Affiliation(s)
- Min-Kyung Sung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tanya R Porras-Yakushi
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
14
|
Sung MK, Reitsma JM, Sweredoski MJ, Hess S, Deshaies RJ. Ribosomal proteins produced in excess are degraded by the ubiquitin-proteasome system. Mol Biol Cell 2016; 27:2642-52. [PMID: 27385339 PMCID: PMC5007085 DOI: 10.1091/mbc.e16-05-0290] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
Overexpression of ribosomal proteins in yeast is prevented by ubiquitination of unassembled ribosomal proteins in the nucleus and/or nucleolus followed by proteasome-dependent degradation. Brief inhibition of proteasome causes strong accumulation of multiple ribosomal proteins in an insoluble fraction, suggesting that this is a general phenomenon. Ribosome assembly is an essential process that consumes prodigious quantities of cellular resources. Ribosomal proteins cannot be overproduced in Saccharomyces cerevisiae because the excess proteins are rapidly degraded. However, the responsible quality control (QC) mechanisms remain poorly characterized. Here we demonstrate that overexpression of multiple proteins of the small and large yeast ribosomal subunits is suppressed. Rpl26 overexpressed from a plasmid can be detected in the nucleolus and nucleoplasm, but it largely fails to assemble into ribosomes and is rapidly degraded. However, if the endogenous RPL26 loci are deleted, plasmid-encoded Rpl26 assembles into ribosomes and localizes to the cytosol. Chemical and genetic perturbation studies indicate that overexpressed ribosomal proteins are degraded by the ubiquitin–proteasome system and not by autophagy. Inhibition of the proteasome led to accumulation of multiple endogenous ribosomal proteins in insoluble aggregates, consistent with the operation of this QC mechanism in the absence of ribosomal protein overexpression. Our studies reveal that ribosomal proteins that fail to assemble into ribosomes are rapidly distinguished from their assembled counterparts and ubiquitinated and degraded within the nuclear compartment.
Collapse
Affiliation(s)
- Min-Kyung Sung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
15
|
Pillet B, García-Gómez JJ, Pausch P, Falquet L, Bange G, de la Cruz J, Kressler D. The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. PLoS Genet 2015; 11:e1005565. [PMID: 26447800 PMCID: PMC4598080 DOI: 10.1371/journal.pgen.1005565] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
Ribosomes are the highly complex macromolecular assemblies dedicated to the synthesis of all cellular proteins from mRNA templates. The main principles underlying the making of ribosomes are conserved across eukaryotic organisms and this process has been studied in most detail in the yeast Saccharomyces cerevisiae. Yeast ribosomes are composed of four ribosomal RNAs (rRNAs) and 79 ribosomal proteins (r-proteins). Most r-proteins need to be transported from the cytoplasm to the nucleus where they get incorporated into the evolving pre-ribosomal particles. Due to the high abundance and difficult physicochemical properties of r-proteins, their correct folding and fail-safe targeting to the assembly site depends largely on general, as well as highly specialized, chaperone and transport systems. Many r-proteins contain universally conserved or eukaryote-specific internal loops and/or terminal extensions, which were shown to mediate their nuclear targeting and association with dedicated chaperones in a growing number of cases. The 60S r-protein Rpl4 is particularly interesting since it harbours a conserved long internal loop and a prominent C-terminal eukaryote-specific extension. Here we show that both the long internal loop and the C-terminal eukaryote-specific extension are strictly required for the functionality of Rpl4. While Rpl4 contains at least five distinct nuclear localization signals (NLS), the C-terminal part of the long internal loop associates with a specific binding partner, termed Acl4. Absence of Acl4 confers a severe slow-growth phenotype and a deficiency in the production of 60S subunits. Genetic and biochemical evidence indicates that Acl4 can be considered as a dedicated chaperone of Rpl4. Notably, Acl4 localizes to both the cytoplasm and nucleus and it has the capacity to capture nascent Rpl4 in a co-translational manner. Taken together, our findings indicate that the dedicated chaperone Acl4 accompanies Rpl4 from the cytoplasm to its pre-60S assembly site in the nucleus.
Collapse
Affiliation(s)
- Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Juan J. García-Gómez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Laurent Falquet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Sheltzer JM, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet 2011; 27:446-53. [PMID: 21872963 DOI: 10.1016/j.tig.2011.07.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/09/2023]
Abstract
Aneuploidy has a paradoxical effect on cell proliferation. In all normal cells analyzed to date, aneuploidy has been found to decrease the rate of cell proliferation. Yet, aneuploidy is also a hallmark of cancer, a disease of enhanced proliferative capacity, and aneuploid cells are frequently recovered following the experimental evolution of microorganisms. Thus, in certain contexts, aneuploidy might also have growth-advantageous properties. New models of aneuploidy and chromosomal instability have shed light on the diverse effects that karyotypic imbalances have on cellular phenotypes, and suggest novel ways of understanding the role of aneuploidy in development and disease.
Collapse
Affiliation(s)
- Jason M Sheltzer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
17
|
Lacombe T, García-Gómez JJ, de la Cruz J, Roser D, Hurt E, Linder P, Kressler D. Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Mol Microbiol 2009; 72:69-84. [PMID: 19210616 DOI: 10.1111/j.1365-2958.2009.06622.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The post-translational modifier ubiquitin is generated exclusively by proteolytic cleavage of precursor proteins. In Saccharomyces cerevisiae, cleavage of the linear precursor proteins releases ubiquitin and the C-terminally fused ribosomal proteins Rpl40 (Ubi1/2 precursor) and Rps31 (Ubi3 precursor), which are part of mature 60S and 40S ribosomal subunits respectively. In this study, we analysed the effects of ubi3 mutations that interfere with cleavage of the ubiquitin-Rps31 fusion protein. Strikingly, the lethal ubi3+P77 mutation, which abolished cleavage almost completely, led to a rapid G1 cell cycle arrest upon genetic depletion of wild-type UBI3. Under these conditions, the otherwise unstable Ubi3+P77 protein was efficiently assembled into translation-competent 40S ribosomal subunits. In contrast to the cleavage-affecting mutations, deletion of the ubiquitin moiety from UBI3 led to a decrease in 40S ribosomal subunits and to the incorporation of the 20S pre-rRNA into polyribosomes. Altogether, our findings provide additional evidence that the initial presence of the ubiquitin moiety of Ubi3 contributes to the efficient production of 40S ribosomal subunits and they suggest that ubiquitin release is a prerequisite for their functional integrity.
Collapse
Affiliation(s)
- Thierry Lacombe
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Degenhardt RF, Bonham-Smith PC. Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog. PLANTA 2008; 228:627-40. [PMID: 18566829 DOI: 10.1007/s00425-008-0765-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/30/2008] [Indexed: 05/20/2023]
Abstract
Translation of nucleus-encoded messages in plants is conducted by the cytoplasmic ribosome, an enzyme that is comprised of two RNA/protein subunits. In Arabidopsis thaliana, the 81 different ribosomal proteins (r-proteins) of the cytosolic ribosome belong to gene families with multiple expressed members. Given that ribosomes generally contain only one copy of each r-protein, regulatory mechanisms must exist to ensure their stoichiometric accumulation. These mechanisms must be dynamic, allowing for adjustments to ribosome biogenesis to fulfill biological requirements for protein synthesis during development, and following stress induction of global changes in gene expression. In this study, we investigated whether r-protein paralogs are feedback regulated at the transcript level by obtaining a T-DNA knockout of one member, RPL23aB, from the two-member RPL23a family. Expression of the lone functional paralog in this line, RPL23aA, was compared to the expression of both paralogs in wildtype plants under non-stressed, low temperature-, and high light stresses. RPL23aA expression was not upregulated in RPL23aB knockouts to compensate for paralog-loss, and consequently knockouts showed reduced total abundance of RPL23a transcripts. However, no phenotype developed in RPL23aB knockouts, suggesting that this paralog is dispensable under experimental conditions examined, or that compensation by RPL23aA may occur post-transcriptionally. Patterns of RPL23aA and RPL23aB transcript accumulation in wildtype plants suggest that paralogs respond coordinately to developmental and stress stimuli.
Collapse
Affiliation(s)
- Rory F Degenhardt
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2.
| | | |
Collapse
|
19
|
Abstract
Recent quantitative analyses of ribosomal protein trafficking in HeLa cells have revealed a prominent and unexpected role for the proteasome in regulating the availability of ribosomal proteins for subunit assembly.
Collapse
Affiliation(s)
- Sander Granneman
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Mayfield Road, Kings Buildings, Michael Swann Building, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
20
|
Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH, Bessler M, Mason PJ. Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 2007; 39:35-43. [PMID: 17376718 DOI: 10.1016/j.bcmd.2007.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
The gene encoding the small subunit ribosomal protein 19 (RPS19) is mutated in about 25% of cases of the bone marrow failure syndrome Diamond Blackfan Anemia (DBA), a childhood disease characterized by failure of red cell production. In these cases DBA is inherited as an autosomal dominant trait and RPS19 haploinsufficiency is thought to cause the disease. To study the molecular pathogenesis of DBA we used siRNA to decrease the level of RPS19 in two human cell lines, HeLa cells and U-2 OS osteosarcoma cells. Cells with reduced RPS19 levels showed a dramatic reduction in the amounts of small 40S ribosome subunits and mature 80S ribosomes and an excess of large 60S subunits. These cells were defective in 18S rRNA production and accumulated 21S and 20S nuclear pre-rRNA molecules, suggesting that RPS19 is required for specific steps in rRNA processing. RPS19 depletion produced a reduction in steady-state levels of RPS6 and RPS16 via a post-transcriptional mechanism while the levels of RPL7 and RPL26 were unaltered, indicating that levels of ribosomal proteins are determined by subunit assembly. This has interesting implications for the pathogenesis of DBA suggesting that deficiency of any of the RPS proteins might have a similar effect and thus may be responsible for causing DBA. Finally in cell lines from DBA patients with mutations we find increased levels of 21S rRNA precursors but no abnormality in the ribosome profile on sucrose gradients or in the steady-state levels of RPS19 suggesting that some cells can partially compensate for the loss of one allele of RPS19. We conclude that defects in ribosome biogenesis may underlie the pathology of Diamond Blackfan Anemia.
Collapse
Affiliation(s)
- Rachel A Idol
- Department of Internal Medicine, Division of Hematology, Division of Laboratory Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lam YW, Lamond AI, Mann M, Andersen JS. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 2007; 17:749-60. [PMID: 17446074 PMCID: PMC1885954 DOI: 10.1016/j.cub.2007.03.064] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/28/2007] [Accepted: 03/14/2007] [Indexed: 11/21/2022]
Abstract
Background The nucleolus is a subnuclear organelle in which rRNAs are transcribed, processed, and assembled with ribosomal proteins into ribosome subunits. Mass spectrometry combined with pulsed incorporation of stable isotopes of arginine and lysine was used to perform a quantitative and unbiased global analysis of the rates at which newly synthesized, endogenous proteins appear within mammalian nucleoli. Results Newly synthesized ribosomal proteins accumulated in nucleoli more quickly than other nucleolar components. Studies involving time-lapse fluorescence microscopy of stable HeLa cell lines expressing fluorescent-protein-tagged nucleolar factors also showed that ribosomal proteins accumulate more quickly than other components. Photobleaching and mass-spectrometry experiments suggest that only a subset of newly synthesized ribosomal proteins are assembled into ribosomes and exported to the cytoplasm. Inhibition of the proteasome caused an accumulation of ribosomal proteins in the nucleus but not in the cytoplasm. Inhibition of rRNA transcription prior to proteasomal inhibition further increased the accumulation of ribosomal proteins in the nucleoplasm. Conclusions Ribosomal proteins are expressed at high levels beyond that required for the typical rate of ribosome-subunit production and accumulate in the nucleolus more quickly than all other nucleolar components. This is balanced by continual degradation of unassembled ribosomal proteins in the nucleoplasm, thereby providing a mechanism for mammalian cells to ensure that ribosomal protein levels are never rate limiting for the efficient assembly of ribosome subunits. The dual time-lapse strategy used in this study, combining proteomics and imaging, provides a powerful approach for the quantitative analysis of the flux of newly synthesized proteins through a cell organelle.
Collapse
Affiliation(s)
- Yun Wah Lam
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Angus I. Lamond
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
- Corresponding author
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jens S. Andersen
- Center for Experimental BioInformatics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
22
|
Dresios J, Panopoulos P, Synetos D. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Mol Microbiol 2006; 59:1651-63. [PMID: 16553873 DOI: 10.1111/j.1365-2958.2006.05054.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ribosome is a macromolecular machine responsible for protein synthesis in all organisms. Despite the enormous progress in studies on the structure and function of prokaryotic ribosomes, the respective molecular details of the mechanism by which the eukaryotic ribosome and associated factors construct a polypeptide accurately and rapidly still remain largely unexplored. Eukaryotic ribosomes possess more RNA and a higher number of proteins than eubacterial ribosomes. As the tertiary structure and basic function of the ribosomes are conserved, what is the contribution of these additional elements? Elucidation of the role of these components should provide clues to the mechanisms of translation in eukaryotes and help unravel the molecular mechanisms underlying the differences between eukaryotic and eubacterial ribosomes. This article focuses on a class of eukaryotic ribosomal proteins that do not have a eubacterial homologue. These proteins play substantial roles in ribosomal structure and function, and in mRNA binding and nascent peptide folding. The role of these proteins in human diseases and viral expression, as well as their potential use as targets for antiviral agents is discussed.
Collapse
Affiliation(s)
- John Dresios
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
23
|
Dembla-Rajpal N, Seipelt R, Wang Q, Rymond BC. Proteasome inhibition alters the transcription of multiple yeast genes. ACTA ACUST UNITED AC 2004; 1680:34-45. [PMID: 15451170 DOI: 10.1016/j.bbaexp.2004.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 11/25/2022]
Abstract
The 26S proteasome degrades denatured proteins and other proteins targeted for destruction by covalent modification. Here we show that impaired proteasome function influences the transcription of numerous yeast genes. Of 6144 genes present on the macroarray filters used in this study, approximately 5% showed measurable mRNA decreases and 2% showed mRNA increases following 30 min of proteasome inhibition. Northern blot hybridization shows that this response is time- and dose-dependent and occurs with either pharmacological or genetic impairment of the proteasome. A number of splicing factors possess the PEST motif found in certain proteasome substrates. However, mRNA levels drop with proteasome inhibition without obvious increases in intron-bearing pre-mRNA, indicating that splicing is not generally impaired when proteome activity is blocked. Chimeric gene constructs, nuclear run-on experiments, and transcriptional inhibition studies show that for members of three functional groups (i.e., ribosomal protein genes, histone genes, and heat shock protein genes) changes in mRNA levels occur largely by transcriptional modulation. In addition, these studies reveal a possible new means of modulating kinetochore levels through CEP3 expression. Together these data strongly support the view that proteasome activity plays a significant role in the regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Neetu Dembla-Rajpal
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | | | | | | |
Collapse
|
24
|
Kolodrubetz D, Kruppa M, Burgum A. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 2001; 272:93-101. [PMID: 11470514 DOI: 10.1016/s0378-1119(01)00568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nhp6Ap and Nhp6Bp, which are 87% identical in sequence, are moderately abundant, chromosome-associated proteins from Saccharomyces cerevisiae. In wild type cells Nhp6Ap is present at three times the level of Nhp6Bp. The effects of altering NHP6A or NHP6B gene number on the expression of its partner has been examined using Northern blots and reporter genes. Deletion of NHP6A led to a three-fold increase in NHP6B synthesis while an extra copy of NHP6A reduced NHP6B expression two-fold. Changes in the NHP6B gene copy number caused more moderate changes in NHP6A synthesis. The regulation of one NHP6 gene by the other uses a mechanism that detects the level of Nhp6 protein (or RNA) rather than gene number, since overexpression of Nhp6B protein from a single gene led to a dramatic decrease in NHP6A synthesis. Deletion analysis showed that the regulatory element involved in gene dosage compensation maps to a 190 bp segment in the NHP6B promoter. The simplest model, that each Nhp6 protein can act as a transcriptional repressor at the other NHP6 gene, is not true since purified Nhp6A protein does not bind specifically to the NHP6B promoter region. Instead, Nhp6p appears to interact with or through another protein in regulating transcription from the NHP6 genes.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, Mail Code 7758, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
25
|
van Spaendonk RM, Ramesar J, van Wigcheren A, Eling W, Beetsma AL, van Gemert GJ, Hooghof J, Janse CJ, Waters AP. Functional equivalence of structurally distinct ribosomes in the malaria parasite, Plasmodium berghei. J Biol Chem 2001; 276:22638-47. [PMID: 11292830 DOI: 10.1074/jbc.m101234200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike most eukaryotes, many apicomplexan parasites contain only a few unlinked copies of ribosomal RNA (rRNA) genes. Based on stage-specific expression of these genes and structural differences among the rRNA molecules it has been suggested that Plasmodium spp. produce functionally different ribosomes in different developmental stages. This hypothesis was investigated through comparison of the structure of the large subunit rRNA molecules of the rodent malaria parasite, Plasmodium berghei, and by disruption of both of the rRNA gene units that are transcribed exclusively during development of this parasite in the mosquito (S-type rRNA gene units). In contrast to the human parasite, Plasmodium falciparum, we did not find evidence of structural differences in core regions of the distinct large subunit rRNAs which are known to be associated with catalytic activity including the GTPase site that varies in P. falciparum. Knockout P. berghei parasites lacking either of the S-type gene units were able to complete development in both the vertebrate and mosquito hosts. These results formally exclude the hypothesis that two functionally different ribosome types distinct from the predominantly blood stage-expressed A-type ribosomes, are required for development of all Plasmodium species in the mosquito. The maintenance of two functionally equivalent rRNA genes might now be explained as a gene dosage phenomenon.
Collapse
Affiliation(s)
- R M van Spaendonk
- Department of Parasitology, Leiden University Medical Centre, Postbus 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mueller PP, Grueter P, Hinnebusch AG, Trachsel H. A ribosomal protein is required for translational regulation of GCN4 mRNA. Evidence for involvement of the ribosome in eIF2 recycling. J Biol Chem 1998; 273:32870-7. [PMID: 9830035 DOI: 10.1074/jbc.273.49.32870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amino acid-starved yeast cells, inhibition of the guanine nucleotide exchange factor eIF2B by phosphorylated translation initiation factor 2 results in increased translation of GCN4 mRNA. We isolated a suppressor of a mutant eIF2B. The suppressor prevents efficient GCN4 mRNA translation due to inactivation of the small ribosomal subunit protein Rps31 and results in low amounts of mutant 40 S ribosomal subunits. Deletion of one of two genes encoding ribosomal protein Rps17 also reduces the amounts of 40 S subunits but does not suppress eIF2B mutations or prevent efficient GCN4 translation. Our findings show that Rps31-deficient ribosomes are altered in a way that decreases the eIF2B requirement and that the small ribosomal subunit mediates the effects of low eIF2B activity on cell viability and translational regulation in response to eIF2 phosphorylation.
Collapse
Affiliation(s)
- P P Mueller
- Institute of Biochemistry and Molecular Biology, University of Berne, CH-3012 Berne, Switzerland.
| | | | | | | |
Collapse
|
27
|
Proweller A, Butler JS. Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae. J Biol Chem 1997; 272:6004-10. [PMID: 9038222 DOI: 10.1074/jbc.272.9.6004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inactivation of Saccharomyces cerevisiae poly(A) polymerase in a strain bearing the temperature-sensitive lethal pap1-1 mutation results in the synthesis of poly(A)- mRNAs that initiate translation with surprising efficiency. Translation of poly(A)- mRNAs after polyadenylation shut-off might result from an increase in the ratio of ribosomes and associated translation factors to mRNA, caused by the inability of poly(A)- mRNAs to accumulate to normal levels. To test this hypothesis, we used ribosomal subunit protein gene mutations to decrease either 40 or 60 S ribosomal subunit concentrations in strains carrying the pap1-1 mutation. Polyadenylation shut-off in such cells results in a nearly normal ratio of ribosomes to mRNA as revealed by polyribosome sedimentation analysis. Ribonuclease protection and Northern blot analyses showed that a significant percentage of poly(A)-deficient and poly(A)- mRNA associate with smaller polyribosomes compared with cells with normal ribosome levels. Analysis of the ratio of poly(A)-deficient and poly(A)- forms of a specific mRNA showed relatively more poly(A)- mRNA sedimenting with 20-60 S complexes than do poly(A)+ forms, suggesting a block in an early step of the translation initiation of the poly(A)- transcripts. These findings support models featuring the poly(A) tail as an enhancer of translation and suggest that the full effect of a poly(A) tail on the initiation strength of a mRNA may require competition for a limited number of free ribosomes or translation factors.
Collapse
Affiliation(s)
- A Proweller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
28
|
Demianova M, Formosa TG, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor are essential components of the 40 S ribosomal subunit. J Biol Chem 1996; 271:11383-91. [PMID: 8626693 DOI: 10.1074/jbc.271.19.11383] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report here the isolation of two genes from the yeast, Saccharomyces cerevisiae, that encode proteins closely related to mammalian p40/laminin receptor precursors (LRPs). The yeast genes, designated YST1 and YST2, encode proteins with over 95% amino acid sequence identity with one another and over 60% identity with the human p40/laminin receptor precursor. The Yst/p40/37-LRP proteins are also more distantly related to the S2 family of ribosomal proteins. Analysis of the distribution of Yst1 tagged with the c-myc epitope revealed that the Yst proteins are components of the 40 S ribosomal subunit. Disruption of either YST1 or YST2 causes a significant reduction in growth rate, while disruption of both genes is lethal. Compared to wild type, polysome profiles in strains lacking either YST1 or YST2 show a pronounced shift from larger to smaller polysomes. This shift is accompanied by a substantial increase in free 60 S subunits and reduced levels of 40 S subunits. We conclude that the Yst proteins are required for translation and contribute to the assembly and/or stability of the 40 S ribosomal subunit.
Collapse
Affiliation(s)
- M Demianova
- Department of Biochemistry, University of Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
29
|
Tornow J, Santangelo GM. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed. Curr Genet 1994; 25:480-7. [PMID: 8082197 DOI: 10.1007/bf00351666] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.
Collapse
Affiliation(s)
- J Tornow
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg 39406-5018
| | | |
Collapse
|
30
|
Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40736-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Folley LS, Fox TD. Reduced dosage of genes encoding ribosomal protein S18 suppresses a mitochondrial initiation codon mutation in Saccharomyces cerevisiae. Genetics 1994; 137:369-79. [PMID: 8070651 PMCID: PMC1205963 DOI: 10.1093/genetics/137.2.369] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18a delta and rps18b delta null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18a delta then rps18b delta. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.
Collapse
Affiliation(s)
- L S Folley
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703
| | | |
Collapse
|
32
|
Dabeva M, Warner J. Ribosomal protein L32 of Saccharomyces cerevisiae regulates both splicing and translation of its own transcript. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36568-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Dodd J, Kolb JM, Nomura M. Lack of complete cooperativity of ribosome assembly in vitro and its possible relevance to in vivo ribosome assembly and the regulation of ribosomal gene expression. Biochimie 1991; 73:757-67. [PMID: 1764521 DOI: 10.1016/0300-9084(91)90055-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Dodd
- Department of Biological Chemistry, University of California, Irvine
| | | | | |
Collapse
|
34
|
Raué HA, Planta RJ. Ribosome biogenesis in yeast. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:89-129. [PMID: 1882079 DOI: 10.1016/s0079-6603(08)60007-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H A Raué
- Biochemisch Laboratorium Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
35
|
Affiliation(s)
- J L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
36
|
Tamate HB, Patel RC, Riedl AE, Jacobs-Lorena M. Overproduction and translational regulation of rp49 ribosomal protein mRNA in transgenic Drosophila carrying extra copies of the gene. MOLECULAR & GENERAL GENETICS : MGG 1990; 221:171-5. [PMID: 2370846 DOI: 10.1007/bf00261717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During Drosophila early development the translation of ribosomal protein mRNAs is regulated specifically and coordinately. In this study we assayed for changes of ribosomal protein rp49 gene expression in flies transformed with extra copies of the gene. RNA blot analysis revealed that the rp49 transcript was overrepresented in most of the transformed fly lines: flies carrying three times more genes than the wild type contained up to seven times more mRNA. The abundance of other ribosomal protein mRNAs was not affected. Despite the large differences in rp49 mRNA content, the proportion of the rp49 mRNA which was associated with polysomes during oogenesis and early embryogenesis did not differ significantly from the wild type, implying that rp49 protein is overproduced in the transgenic flies. The results indicate that the basis for coordinate r-protein gene expression lies in the intrinsic properties of r-protein genes, rather than in a dynamic system that separately modulates the expression of individual genes.
Collapse
Affiliation(s)
- H B Tamate
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | |
Collapse
|
37
|
Regulation of Saccharomyces cerevisiae ornithine decarboxylase expression in response to polyamine. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84684-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Degradation of structurally characterized proteins injected into HeLa cells. Tests of hypotheses. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77713-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Hammond ML, Bowman LH. Insulin stimulates the translation of ribosomal proteins and the transcription of rDNA in mouse myoblasts. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77904-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Miles DJ, Donovan DM, Pearson NJ. Construction and characterization of a haploid strain of Saccharomyces cerevisiae that completely lacks all genomic CYH2 sequences. Curr Genet 1988; 14:325-9. [PMID: 3063398 DOI: 10.1007/bf00419989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A diploid strain of the yeast Saccharomyces cerevisiae has been constructed that has one copy of the ribosomal protein gene CYH2 completely deleted and replaced with the TRP1 gene using the method of Rothstein (1983). There are only small differences in growth rate and no detectable difference in steady state level of CYH2 mRNA between the diploid that is heterozygous for the CYH2 deletion and the parent diploid with two normal copies of this gene. This suggests that the diploid must partially compensate for the loss of one CYH2 gene. Tetrad dissection shows that haploid spores lacking the CYH2 gene cannot germinate. The lethality of this deletion can be rescued by a CYH2 cDNA on a low copy vector. Haploids which lack the genomic copy of the CYH2 gene, but contain a plasmid copy of the CYH2 cDNA are able to grow normally. These CYH2 deleted yeast haploids should be useful to analyze mutationally altered CYH2 genes and genes homologous to CYH2 from other organisms without interference from a genomic copy.
Collapse
Affiliation(s)
- D J Miles
- Department of Biological Sciences, University of Maryland, Baltimore County, Catonsville 21228
| | | | | |
Collapse
|
41
|
Durbin JE, Swerdel MR, Fallon AM. Identification of cDNAs corresponding to mosquito ribosomal protein genes. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 950:182-92. [PMID: 3382663 DOI: 10.1016/0167-4781(88)90010-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sequences encoding mosquito (Aedes albopictus) ribosomal proteins L8, L14 and L31 were identified from a cDNA library made from size-selected polyadenylated mRNA. Candidate cDNAs corresponding to moderately abundant mRNAs were screened by translation of hybrid-selected transcripts in wheat-germ lysates. Translation products were extracted with acetic acid and analyzed by electrophoresis in two dimensions in the presence of unlabeled ribosomal proteins. The identity of translation products that coelectrophoresed with purified ribosomal protein standards was supported by peptide mapping. The cDNAs corresponding to L8 (pL8) and L31 (pL31) hybridized to cytoplasmic mRNAs of 1.4 and 0.9 kb, respectively. In Southern blots of genomic DNA digested with BamHI, HindIII or EcoRI, the cDNA inserts from both pL8 and pL31 gave simple hybridization patterns suggestive of a low copy number for mosquito ribosomal protein genes.
Collapse
Affiliation(s)
- J E Durbin
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Piscataway
| | | | | |
Collapse
|
42
|
Baum EZ, Hyman LE, Wormington WM. Post-translational control of ribosomal protein L1 accumulation in Xenopus oocytes. Dev Biol 1988; 126:141-9. [PMID: 3342930 DOI: 10.1016/0012-1606(88)90247-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A functional ribosomal protein mRNA, encoding the 60 S subunit protein L1, has been synthesized in vitro using bacteriophage SP6 RNA polymerase. This mRNA directs the synthesis of a product indistinguishable from L1 protein purified from Xenopus ovarian ribosomes. Our results show that L1 synthesis in stage VI oocytes increases in response to microinjection of exogenous SP6-L1 mRNA, but excess L1 protein is not stably accumulated. These results indicate that dosage compensation does not occur at the translational level for this ribosomal protein mRNA and that the abundance of this protein in fully grown oocytes is subject to post-translational regulation.
Collapse
Affiliation(s)
- E Z Baum
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254
| | | | | |
Collapse
|
43
|
Affiliation(s)
- W H Mager
- Biochemical Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Rechsteiner M. Regulation of enzyme levels by proteolysis: the role of pest regions. ADVANCES IN ENZYME REGULATION 1988; 27:135-51. [PMID: 2907964 DOI: 10.1016/0065-2571(88)90014-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enzymes can be regulated in a variety of ways. Readily reversible mechanisms, such as phosphorylation, are frequently used by cells to control metabolic pathways. Less often, enzyme levels are regulated by changing the rate at which the protein is destroyed. Although these changes, too, are reversible through protein synthesis, large variations in enzyme concentration can be produced in very short periods of time by combinations of transcriptional control, translational control and rapid degradation. We recently examined the primary sequences of proteins whose intracellular half-lives are less than two hours. With a single exception, each short-lived protein contains one or more regions rich in proline (P), glutamic acid (E), serine (S) and threonine (T). These PEST regions range in length from 12 to 60 residues, and they are often flanked by possibly charged amino acids. Similar inspection of 35 more stable, structurally characterized proteins revealed only three weak PEST regions. All PEST proteins appear to be important regulatory molecules, and their fast turnover surely reflects a metabolic requirement for rapid changes in their concentrations. Known PEST proteins include oncogene products, key enzymes and components of signal pathways. In addition, there are a number of PEST-containing proteins that are suspected of being rapidly degraded. These proteins include Drosophila homeotic proteins (e.g., notch, snake, caudal, ftz and even-skipped) and a host of yeast cdc mutants. PEST regions, which target the molecules containing them for destruction, thus appear to be widely distributed among metabolically unstable proteins.
Collapse
Affiliation(s)
- M Rechsteiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132
| |
Collapse
|
45
|
Wormington WM. Expression of ribosomal protein genes during Xenopus development. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1988; 5:227-40. [PMID: 3077976 DOI: 10.1007/978-1-4615-6817-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Xenopus ribosomal protein genes provide an excellent system to elucidate the complex regulation encompassing 60 functionally related proteins present in equimolar amounts in ribosomal subunits. Oogenesis and embryogenesis provide unique opportunities to investigate ribosome biosynthesis in situations wherein gene activation of individual components is uncoupled from assembly of the ribosomal subunits. This chapter has focused on the basic parameters that control ribosomal protein gene expression during development. Translational control is clearly a major level for coordinating the regulation of these genes during development, as is posttranslational stability of the ribosomal proteins and RNA splicing of the L1 gene. In addition to these levels of control under active investigation, a number of intriguing problems remain to be addressed in any detail. For example, the mechanisms that balance ribosomal protein production with subunit assembly in oocytes remain to be determined. Resolution of these events must also define the processes by which ribosomal proteins, upon synthesis in the cytoplasm, are first translocated to the nucleus and subsequently to the nucleolus for subunit assembly. Functional approaches in which these genes are assayed for accurate developmental control in microinjected oocytes and fertilized eggs will undoubtedly provide information on the synthesis of this eukaryotic organelle and the signals responsible for altering these processes at different developmental stages.
Collapse
Affiliation(s)
- W M Wormington
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254
| |
Collapse
|
46
|
Abstract
The core histone genes of Saccharomyces cerevisiae are arranged as duplicate nonallelic sets of specifically paired genes. The identity of structural organization between the duplicated gene pairs would have its simplest evolutionary origin in the duplication of a complete locus in a single event. In such a case, the time since the duplication of one of the genes should be identical to that since duplication of the gene adjacent to it on the chromosome. A calculation of the evolutionary distances between the coding DNA sequences of the histone genes leads to a duplication paradox: The extents of sequence divergence in the silent component of third-base positions for adjacent pairs of genes are not identical. Estimates of the evolutionary distance between the two H3-H4 noncoding intergene DNA sequences are large; the divergence between the two separate sequences is indistinguishable from the divergence between either of the regions and a randomly generated permutation of itself. These results suggest that the duplication event may have occurred much earlier than previously estimated. The potential age of the duplication, and the attractive simplicity of the duplication of both the H3-H4 and the H2A-H2B gene pairs having taken place in a single event, leads to the hypothesis that modern haploid S. cerevisiae may have evolved by diploidization or fusion of two ancient fungi.
Collapse
|
47
|
elBaradi TT, van der Sande CA, Mager WH, Raué HA, Planta RJ. The cellular level of yeast ribosomal protein L25 is controlled principally by rapid degradation of excess protein. Curr Genet 1986; 10:733-9. [PMID: 3329033 DOI: 10.1007/bf00405095] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When the gene dosage for the primary rRNA-binding ribosomal protein L25 in yeast cells was raised about 50-fold, the level of mature L25 transcripts was found to increase almost proportionally. The plasmid-derived L25 transcripts were structurally indistinguishable from their genomic counterparts, freely entered polysomes in vivo and were fully translatable in a heterologous in vitro system. Nevertheless, pulse-labelling for periods varying from 3-20 min did not reveal a significant elevation of the intracellular level of L25-protein. When pulse-times were decreased to 10-45 s, however, we did detect a substantial overproduction of L25. We conclude that, despite the strong RNA-binding capacity of the protein, accumulation of L25 is not controlled by an autogenous (pre-)mRNA-targeted mechanism similar to that operating in bacteria, but rather by extremely rapid degradation of excess protein produced.
Collapse
Affiliation(s)
- T T elBaradi
- Biochemisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|