1
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
2
|
Role of untranslated regions of the hemagglutinin-neuraminidase gene in replication and pathogenicity of newcastle disease virus. J Virol 2009; 83:5943-6. [PMID: 19321607 DOI: 10.1128/jvi.00188-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine the role of untranslated regions (UTRs) in replication and pathogenesis of Newcastle disease virus (NDV), we generated recombinant viruses with deletions in 5' and 3' UTRs of the HN mRNA. Deletion of any HN UTR did not noticeably affect in vitro replication of these viruses. However, complete deletion of the 5' UTR of the HN gene decreased the HN mRNA levels and HN protein contents in virus particles, resulting in attenuation of the virus in chickens. This indicates that the 5' UTR of HN mRNA plays an important role in replication and pathogenicity of NDV in vivo.
Collapse
|
3
|
Moustakas A, Sonstegard TS, Hackett PB. Alterations of the three short open reading frames in the Rous sarcoma virus leader RNA modulate viral replication and gene expression. J Virol 1993; 67:4337-49. [PMID: 7685415 PMCID: PMC237804 DOI: 10.1128/jvi.67.7.4337-4349.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production.
Collapse
Affiliation(s)
- A Moustakas
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
4
|
Moustakas A, Sonstegard TS, Hackett PB. Effects of the open reading frames in the Rous sarcoma virus leader RNA on translation. J Virol 1993; 67:4350-7. [PMID: 8389931 PMCID: PMC237805 DOI: 10.1128/jvi.67.7.4350-4357.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three short open reading frames (ORFs) reside in the 5' leader of Rous sarcoma virus (RSV) and are conserved in all avian sarcoma-leukosis retroviruses. Both extensions of the lengths of the ORFs and alterations in their initiation codons affect viral replication and gene expression. To determine whether the effects on viral replication were due to translational regulation mediated by the ORFs, we examined translation following mutation of the initiation and termination codons of each of the three ORFs. We found that the ORFs marginally enhanced downstream gene expression. Moreover, repression of downstream gene translation was proportional to the lengths of the elongated ORFs and depended on the initiation contexts of the AUG codons. Although the ORFs play a major role in viral activities, their effects on translation were relatively minor. Rather, the ORFs may affect the fate of unspliced avian retroviral RNA in chronically infected cells by participating in the sorting of viral RNA for either translation or encapsidation into virions.
Collapse
Affiliation(s)
- A Moustakas
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
5
|
Hackett PB, Dalton MW, Johnson DP, Petersen RB. Phylogenetic and physical analysis of the 5' leader RNA sequences of avian retroviruses. Nucleic Acids Res 1991; 19:6929-34. [PMID: 1662367 PMCID: PMC329330 DOI: 10.1093/nar/19.24.6929] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A study of the secondary structures of the 5'-leader RNA sequences of avian leukosis/sarcoma viruses was conducted using phylogenetic sequence alignment, theoretical structures calculated from base-pairing interactions involving the calculated minimal delta G values, and RNaseT1 sensitivity. The results suggest that all of the avian retroviral RNA leaders may be able to adopt similar conformations. Open reading frames in the leader RNAs may be positioned to facilitate viral activities such as translation and packaging of the genomic RNA into virus particles.
Collapse
Affiliation(s)
- P B Hackett
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | | | |
Collapse
|
6
|
Cosset FL, Legras C, Thomas JL, Molina RM, Chebloune Y, Faure C, Nigon VM, Verdier G. Improvement of avian leukosis virus (ALV)-based retrovirus vectors by using different cis-acting sequences from ALVs. J Virol 1991; 65:3388-94. [PMID: 1851887 PMCID: PMC241003 DOI: 10.1128/jvi.65.6.3388-3394.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production and expression of double-expression vectors which transduce both Neo(r) and lacZ genes and are based on the structure of avian leukosis virus were enhanced by using cis-acting sequences (long terminal repeats and noncoding sequences) from Rous-associated virus-1 and Rous-associated virus-2 rather than those of avian erythroblastosis virus previously used in our constructs. Polyclonal producer cells obtained after transfection of these vectors into the Isolde packaging cell line gave rise to titers as high as 3 x 10(5) lacZ CFU/ml, whereas it was possible to isolate clones of producer cells giving rise to titers of more than 10(6) resistance focus-forming units per ml.
Collapse
Affiliation(s)
- F L Cosset
- Institut National de la Recherche Agronomique, Université Claude Bernard Lyon-I, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hensel CH, Petersen RB, Hackett PB. Effects of alterations in the leader sequence of Rous sarcoma virus RNA on initiation of translation. J Virol 1989; 63:4986-90. [PMID: 2552182 PMCID: PMC251153 DOI: 10.1128/jvi.63.11.4986-4990.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 372-nucleotide leader sequence of Rous sarcoma virus RNA contains three conserved short open reading frames and other sequences responsible for a variety of life cycle functions. We have investigated several aspects of the leader RNA which may influence the translation of the major coding regions to which the leader is juxtaposed. We found that small perturbations of the leader length do not affect the binding and scanning of ribosomal subunits by more than about 10%, that the length and/or structure of the RSV RNA leader is near optimal for translation of the major coding regions of the viral RNA, that inclusion or deletion of open reading frames influences downstream initiation in a manner that is not strictly additive, and that reinitiation of translation at the gag gene is very efficient.
Collapse
Affiliation(s)
- C H Hensel
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
8
|
Petersen RB, Moustakas A, Hackett PB. A mutation in the short 5'-proximal open reading frame on Rous sarcoma virus RNA alters virus production. J Virol 1989; 63:4787-96. [PMID: 2552153 PMCID: PMC251116 DOI: 10.1128/jvi.63.11.4787-4796.1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 5'-proximal open reading frame on Rous sarcoma virus RNA encodes a seven-amino-acid peptide and is conserved in all avian sarcoma-leukosis retroviruses. Ribosome-binding site analysis in intact chick cells showed that the 5'-proximal AUG codon is a strong site for initiation of translation in vivo. Removal of the 5'-proximal AUG codon by site-specific mutagenesis resulted in a virus with a reduced ability either to replicate or to transform a population of chicken embryo fibroblasts. These results establish a procedure for determining sites of ribosome binding and initiation of translation on mRNAs in intact eucaryotic cells and strongly suggest that the 5'-proximal open reading frame (or its AUG codon) on Rous sarcoma virus RNA has an important role in regulating viral activity.
Collapse
Affiliation(s)
- R B Petersen
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | |
Collapse
|
9
|
Control of the Saccharomyces cerevisiae regulatory gene PET494: transcriptional repression by glucose and translational induction by oxygen. Mol Cell Biol 1989. [PMID: 2540420 DOI: 10.1128/mcb.9.2.484] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the Saccharomyces cerevisiae nuclear gene PET494 is required to promote the translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII). The level of cytochrome c oxidase activity is affected by several different environmental conditions, which also influence coxIII expression. We have studied the regulation of PET494 to test whether the level of its expression might modulate coxIII translation in response to these conditions. A pet494::lacZ fusion was constructed and used to monitor PET494 expression. PET494 was regulated by oxygen availability: expression in a respiration-competent diploid strain grown anaerobically was one-fifth the level of expression in aerobically grown cells. However, since PET494 mRNA levels did not vary in response to oxygen deprivation, regulation by oxygen appears to occur at the translational level. This oxygen regulation was not mediated by heme, and PET494 expression was independent of the heme activator protein HAP2. The regulation of PET494 expression by carbon source was also examined. In cells grown on glucose-containing medium, PET494 was expressed at levels four- to sixfold lower than in cells grown on ethanol and glycerol. However, addition of ethanol to glucose-containing medium induced PET494 expression approximately twofold. PET494 transcript levels varied over a fourfold range in response to different carbon sources. The effects on PET494 expression of mutations in the SNF1, SNF2, SSN6, and HXK2 genes were also determined and found to be minimal.
Collapse
|
10
|
Marykwas DL, Fox TD. Control of the Saccharomyces cerevisiae regulatory gene PET494: transcriptional repression by glucose and translational induction by oxygen. Mol Cell Biol 1989; 9:484-91. [PMID: 2540420 PMCID: PMC362624 DOI: 10.1128/mcb.9.2.484-491.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The product of the Saccharomyces cerevisiae nuclear gene PET494 is required to promote the translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit III (coxIII). The level of cytochrome c oxidase activity is affected by several different environmental conditions, which also influence coxIII expression. We have studied the regulation of PET494 to test whether the level of its expression might modulate coxIII translation in response to these conditions. A pet494::lacZ fusion was constructed and used to monitor PET494 expression. PET494 was regulated by oxygen availability: expression in a respiration-competent diploid strain grown anaerobically was one-fifth the level of expression in aerobically grown cells. However, since PET494 mRNA levels did not vary in response to oxygen deprivation, regulation by oxygen appears to occur at the translational level. This oxygen regulation was not mediated by heme, and PET494 expression was independent of the heme activator protein HAP2. The regulation of PET494 expression by carbon source was also examined. In cells grown on glucose-containing medium, PET494 was expressed at levels four- to sixfold lower than in cells grown on ethanol and glycerol. However, addition of ethanol to glucose-containing medium induced PET494 expression approximately twofold. PET494 transcript levels varied over a fourfold range in response to different carbon sources. The effects on PET494 expression of mutations in the SNF1, SNF2, SSN6, and HXK2 genes were also determined and found to be minimal.
Collapse
Affiliation(s)
- D L Marykwas
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
11
|
Abstract
This chapter discusses some observations concerning the natural occurrence and structural organization of polycistronic animal virus mRNAs, and the mechanisms by which they may be translated to yield two or more unique polypeptide products. In most polycistronic viral mRNAs, initiation of translation of both the 5’-proximal, upstream cistron and the internal, downstream cistron(s) likewise occurs at an AUG codon. Animal viruses encoding polycistronic mRNAs in which translation-initiation occurs alternatively at one or more AUG initiation sites, include members of several virus families that utilize a variety of different replication strategies as parts of their life cycles. They include: 1. viruses with DNA genomes and viruses with RNA genomes; 2. viruses with circular genomes and viruses with linear genomes; 3. viruses whose genomes are constituted by a single piece of nucleic acid, as well as viruses with segmented genomes; and 4. viruses that utilize the cell nucleus as the site for mRNA biogenesis, as well as viruses whose mRNA is synthesized in the cytoplasm. Furthermore, many different biochemical mechanisms may exist in animal cells to permit the expression of functionally polycistronic viral mRNAs.
Collapse
|
12
|
Pelletier J, Kaplan G, Racaniello VR, Sonenberg N. Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5' noncoding region. J Virol 1988; 62:2219-27. [PMID: 2836606 PMCID: PMC253356 DOI: 10.1128/jvi.62.7.2219-2227.1988] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Poliovirus mRNA contains a long 5' noncoding region of about 750 nucleotides (the exact number varies among the three virus serotypes), which contains several AUG codons upstream of the major initiator AUG. Unlike most eucaryotic mRNAs, poliovirus does not contain a m7GpppX (where X is any nucleotide) cap structure at its 5' end and is translated by a cap-independent mechanism. To study the manner by which poliovirus mRNA is expressed, we examined the translational efficiencies of a series of deletion mutants within the 5' noncoding region of the mRNA. In this paper we report striking translation system-specific differences in the ability of the altered mRNAs to be translated. The results suggest the existence of an inhibitory cis-acting element(s) within the 5' noncoding region of poliovirus (between nucleotides 70 and 381) which restricts mRNA translation in reticulocyte lysate, wheat germ extract, and Xenopus oocytes, but not in HeLa cell extracts. In addition, we show that HeLa cell extracts contain a trans-acting factor(s) that overcomes this restriction.
Collapse
Affiliation(s)
- J Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
13
|
Good PJ, Welch RC, Barkan A, Somasekhar MB, Mertz JE. Both VP2 and VP3 are synthesized from each of the alternative spliced late 19S RNA species of simian virus 40. J Virol 1988; 62:944-53. [PMID: 2828689 PMCID: PMC253653 DOI: 10.1128/jvi.62.3.944-953.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The late 19S RNAs of simian virus 40 consist of a family of alternatively spliced RNAs, each of which contains open reading frames corresponding to all three of the virion proteins. Two approaches were used to test the hypothesis that each alternatively spliced 19S RNA species is translated to synthesize preferentially only one of the virion proteins. First, we analyzed the synthesis of virion proteins in simian virus 40 mutant-infected monkey cells that accumulate predominantly either only one spliced 19S RNA species or only the 19S RNAs. Second, we determined the virion proteins synthesized in a rabbit reticulocyte lysate programmed with specific, in vitro-transcribed 19S RNA species. These results indicated that VP2 and VP3, but not VP1, are synthesized from all 19S RNA species. Quantitative analysis of these data indicated that individual 19S RNA species containing a translation initiation signal upstream of the VP2 AUG codon were translated in a cell extract three- to fivefold less efficiently than were 19S RNA species lacking this signal and that the precise rate of synthesis of VP2 relative to VP3 varied somewhat with the sequence of the leader region. These data are consistent with the synthesis of VP2 and VP3 occurring by a leaky scanning mechanism in which initiation of translation at a specific AUG codon is affected by both (i) the intrinsic efficiency of ribosomes recognizing the sequences surrounding the AUG codon as an initiation signal and (ii) partial interference from 5'-proximal initiation signals and their corresponding open reading frames.
Collapse
Affiliation(s)
- P J Good
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706
| | | | | | | | | |
Collapse
|
14
|
Proviral sequences that restrict retroviral expression in mouse embryonal carcinoma cells. Mol Cell Biol 1988. [PMID: 3683398 DOI: 10.1128/mcb.7.10.3775] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Embryonal carcinoma (EC) cells are nonpermissive for retrovirus replication. Restriction of retroviral expression in EC cells was studied by using DNA transfection techniques. To investigate the activity of the Moloney murine leukemia virus (M-MuLV)enhancer and promoter sequences, the M-MuLV long terminal repeat and the defined long terminal repeat deletions were linked to neo structural gene sequences that encode resistance to the neomycin analog G418. Transient expression data and drug resistance frequencies support the findings that the M-MuLV enhancer is not active in EC cells but that promoter sequences are functional. In addition, a proviral DNA fragment that encodes the leader RNA sequence of a M-MuLV recombinant retrovirus was found to restrict expression specifically in EC cells. Deletion analysis of the leader fragment localized the inhibitory sequences to a region that spans the M-MuLV tRNA primer binding site. It is not known whether restriction occurs at a transcriptional or posttranscriptional level, but steady-state RNA levels in transient expression assays were significantly reduced.
Collapse
|
15
|
Loh TP, Sievert LL, Scott RW. Proviral sequences that restrict retroviral expression in mouse embryonal carcinoma cells. Mol Cell Biol 1987; 7:3775-84. [PMID: 3683398 PMCID: PMC368034 DOI: 10.1128/mcb.7.10.3775-3784.1987] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Embryonal carcinoma (EC) cells are nonpermissive for retrovirus replication. Restriction of retroviral expression in EC cells was studied by using DNA transfection techniques. To investigate the activity of the Moloney murine leukemia virus (M-MuLV)enhancer and promoter sequences, the M-MuLV long terminal repeat and the defined long terminal repeat deletions were linked to neo structural gene sequences that encode resistance to the neomycin analog G418. Transient expression data and drug resistance frequencies support the findings that the M-MuLV enhancer is not active in EC cells but that promoter sequences are functional. In addition, a proviral DNA fragment that encodes the leader RNA sequence of a M-MuLV recombinant retrovirus was found to restrict expression specifically in EC cells. Deletion analysis of the leader fragment localized the inhibitory sequences to a region that spans the M-MuLV tRNA primer binding site. It is not known whether restriction occurs at a transcriptional or posttranscriptional level, but steady-state RNA levels in transient expression assays were significantly reduced.
Collapse
Affiliation(s)
- T P Loh
- E. I. du Pont de Nemours and Company, Inc., Central Research and Development Department, Wilmington, Delaware 19898
| | | | | |
Collapse
|
16
|
Arya SK. 3'-orf and sor genes of human immunodeficiency virus: in vitro transcription-translation and immunoreactive domains. Proc Natl Acad Sci U S A 1987; 84:5429-33. [PMID: 3496604 PMCID: PMC298871 DOI: 10.1073/pnas.84.15.5429] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An in vitro transcription and translation procedure was designed to translate multiple open reading frames from cloned DNAs. For human immunodeficiency virus (HIV) cloned DNA carrying three open reading frames (sor, tat, and 3'-orf), the approach yielded three authentic polypeptides. Clearly, the internal initiation codons can be used for reinitiation of translation of the downstream open reading frames. However, the downstream open reading frames were translated with relatively lower translational efficiencies. In general, the translational efficiency of RNAs depended significantly on their structures. The in vitro approach was utilized further to map the immunoreactive domains of the 3'-orf and sor gene products of HIV. Deletion clones were constructed with deletions within the open reading frames. Translation products of these clones reacted differentially with anti-3'-orf and anti-sor rabbit immune sera and human sera from individuals with acquired immunodeficiency syndrome and related disorders. Apparently, recombinant 3'-orf and sor polypeptides used to immunize rabbits express many more immunogenic epitopes and/or different set of epitopes than is the case for the native proteins in humans infected with HIV. Immunoreactivity and immunogenicity of these gene products were significantly dependent on their structure and/or conformation.
Collapse
|
17
|
Katz RA, Terry RW, Skalka AM. A conserved cis-acting sequence in the 5' leader of avian sarcoma virus RNA is required for packaging. J Virol 1986; 59:163-7. [PMID: 3012114 PMCID: PMC253052 DOI: 10.1128/jvi.59.1.163-167.1986] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The deletion of a conserved sequence of ca. 30 nucleotides in the 5' noncoding leader region of an avian sarcoma virus DNA clone resulted in a loss of infectivity after transfection of chicken embryo fibroblasts. Genetic and biochemical analysis of a representative mutant demonstrated that the env gene was expressed normally. Thus, viral RNA transcription, splicing, and translation were not impaired. The amount of mutant viral RNA encapsidated into virions, however, was severely reduced despite the presence of helper-virus. We conclude that the deleted sequence is an essential cis-acting packaging signal.
Collapse
|
18
|
Abstract
This chapter summarizes the structural features that govern the translation of viral mRNAs: where the synthesis of a protein starts and ends, how many proteins can be produced from one mRNA, and how efficiently. It focuses on the interplay between viral and cellular mRNAs and the translational machinery. That interplay, together with the intrinsic structure of viral mRNAs, determines the patterns of translation in infected cells. It also points out some possibilities for translational regulation that can only be glimpsed at present, but are likely to come into focus in the future. The mechanism of selecting the initiation site for protein synthesis appears to follow a single formula. The translational machinery displays a certain flexibility that is exploited more frequently by viral than by cellular mRNAs. Although some of the parameters that determine efficiency have been identified, how efficiently a given mRNA will be translated cannot be predicted by summing the known parameters.
Collapse
|