1
|
Mziaut H, Henniger G, Ganss K, Hempel S, Wolk S, McChord J, Chowdhury K, Ravassard P, Knoch KP, Krautz C, Weitz J, Grützmann R, Pilarsky C, Solimena M, Kersting S. MiR-132 controls pancreatic beta cell proliferation and survival through Pten/Akt/Foxo3 signaling. Mol Metab 2019; 31:150-162. [PMID: 31918917 PMCID: PMC6928290 DOI: 10.1016/j.molmet.2019.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
Objective MicroRNAs (miRNAs) play an integral role in maintaining beta cell function and identity. Deciphering their targets and precise role, however, remains challenging. In this study, we aimed to identify miRNAs and their downstream targets involved in the regeneration of islet beta cells following partial pancreatectomy in mice. Methods RNA from laser capture microdissected (LCM) islets of partially pancreatectomized and sham-operated mice were profiled with microarrays to identify putative miRNAs implicated in beta cell regeneration. Altered expression of the selected miRNAs, including miR-132, was verified by RT-PCR. Potential targets of miR-132 were selected through bioinformatic data mining. Predicted miR-132 targets were validated for their changed RNA, protein expression levels, and signaling upon miR-132 knockdown and/or overexpression in mouse MIN6 and human EndoC-βH1 insulinoma cells. The ability of miR-132 to foster beta cell proliferation in vivo was further assessed in pancreatectomized miR-132−/− and control mice. Results Partial pancreatectomy significantly increased the number of BrdU+/insulin+ islet cells. Microarray profiling revealed that 14 miRNAs, including miR-132 and -141, were significantly upregulated in the LCM islets of the partially pancreatectomized mice compared to the LCM islets of the control mice. In the same comparison, miR-760 was the only downregulated miRNA. The changed expression of these miRNAs in the islets of the partially pancreatectomized mice was confirmed by RT-PCR only in the case of miR-132 and -141. Based on previous knowledge of its function, we focused our attention on miR-132. Downregulation of miR-132 reduced the proliferation of MIN6 cells while enhancing the levels of pro-apoptotic cleaved caspase-9. The opposite was observed in miR-132 overexpressing MIN6 cells. Microarray profiling, RT-PCR, and immunoblotting of the latter cells demonstrated their downregulated expression of Pten with concomitant increased levels of pro-proliferative factors phospho-Akt and phospho-Creb and inactivation of pro-apoptotic Foxo3a via its phosphorylation. Downregulation of Pten was further confirmed in the LCM islets of pancreatectomized mice compared to the sham-operated mice. Moreover, overexpression of miR-132 correlated with increased proliferation of EndoC-βH1 cells. The regeneration of beta cells following partial pancreatectomy was lower in the miR-132/212−/− mice than the control littermates. Conclusions This study provides compelling evidence about the critical role of miR-132 for the regeneration of mouse islet beta cells through the downregulation of its target Pten. Hence, the miR-132/Pten/Akt/Foxo3 signaling pathway may represent a suitable target to enhance beta cell mass. miR-132 is induced in mouse islets upon partial pancreatectomy. miR-132 promotes regeneration of β-cells in vivo following partial pancreatectomy. miR-132 fosters in vitro proliferation/survival through Pten/Akt/Foxo3 signaling. Downstream targets of miR-132 were identified in pancreatic β-cells. miR-132−/− mice have impaired β-cell proliferation.
Collapse
Affiliation(s)
- Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Georg Henniger
- Department of General, Thoracic, and Vascular Surgery, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Katharina Ganss
- Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sebastian Hempel
- Department of General, Thoracic, and Vascular Surgery, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Steffen Wolk
- Department of General, Thoracic, and Vascular Surgery, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Johanna McChord
- Department of General, Thoracic, and Vascular Surgery, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Kamal Chowdhury
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Philippe Ravassard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, F-75013, Paris, France
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Christian Krautz
- Department of Surgery, University of Erlangen, Erlangen, Germany
| | - Jürgen Weitz
- Department of General, Thoracic, and Vascular Surgery, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Robert Grützmann
- Department of Surgery, University of Erlangen, Erlangen, Germany
| | | | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Stephan Kersting
- Department of Surgery, University of Erlangen, Erlangen, Germany.
| |
Collapse
|
2
|
Vasjari L, Bresan S, Biskup C, Pai G, Rubio I. Ras signals principally via Erk in G1 but cooperates with PI3K/Akt for Cyclin D induction and S-phase entry. Cell Cycle 2019; 18:204-225. [PMID: 30560710 DOI: 10.1080/15384101.2018.1560205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.
Collapse
Affiliation(s)
- Ledia Vasjari
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Stephanie Bresan
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Christoph Biskup
- b Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| | - Govind Pai
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Ignacio Rubio
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| |
Collapse
|
3
|
Castellano E, Santos E. Functional specificity of ras isoforms: so similar but so different. Genes Cancer 2011; 2:216-31. [PMID: 21779495 DOI: 10.1177/1947601911408081] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
H-ras, N-ras, and K-ras are canonical ras gene family members frequently activated by point mutation in human cancers and coding for 4 different, highly related protein isoforms (H-Ras, N-Ras, K-Ras4A, and K-Ras4B). Their expression is nearly ubiquitous and broadly conserved across eukaryotic species, although there are quantitative and qualitative differences of expression depending on the tissue and/or developmental stage under consideration. Extensive functional studies have determined during the last quarter century that these Ras gene products are critical components of signaling pathways that control eukaryotic cell proliferation, survival, and differentiation. However, because of their homology and frequent coexpression in various cellular contexts, it remained unclear whether the different Ras proteins play specific or overlapping functional roles in physiological and pathological processes. Initially, their high degree of sequence homology and the observation that all Ras isoforms share common sets of downstream effectors and upstream activators suggested that they were mostly redundant functionally. In contrast, the notion of functional specificity for each of the different Ras isoforms is supported at present by an increasing body of experimental observations, including 1) the fact that different ras isoforms are preferentially mutated in specific types of tumors or developmental disorders; 2) the different transforming potential of transfected ras genes in different cell contexts; 3) the distinct sensitivities exhibited by the various Ras family members for modulation by different GAPs or GEFs; 4) the demonstration that different Ras isoforms follow distinct intracellular processing pathways and localize to different membrane microdomains or subcellular compartments; 5) the different phenotypes displayed by genetically modified animal strains for each of the 3 ras loci; and 6) the specific transcriptional networks controlled by each isoform in different cellular settings.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
4
|
Jacobsen K, Groth A, Willumsen BM. Ras-inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 2002; 21:3058-67. [PMID: 12082537 DOI: 10.1038/sj.onc.1205423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Revised: 02/07/2002] [Accepted: 02/20/2002] [Indexed: 11/08/2022]
Abstract
The Ras oncogene transforms cultured murine fibroblasts into malignant, focus-forming cells, whose lack of contact inhibition is evidenced by high saturation densities. In order to investigate the reversibility of Ras transformation, as well as the kinetics of Ras-induced changes, cell lines that conditionally express oncogenic Ras were constructed. Both focus formation and increased saturation density were inducible and fully reversible. In exponentially growing cells, oncogenic Ras-expression had no effect on proliferation rates, Erk phosphorylation, or the level of cyclin D1, and Ras-induction did not confer serum-independent growth. As expected, growth to high density in uninduced cells led to quiescence with a low level of cyclin D1 and no active Erk; in this setting, Ras induction prevented full downregulation of cyclin D1 and inactivation of Erk. Our results show that Ras expression to a level sufficient for transformation leads to relatively subtle effects on known downstream targets, and that the focus formation and increased saturation density growth induced by Ras is not a result of growth factor independence.
Collapse
Affiliation(s)
- Kivin Jacobsen
- Department of Molecular Cell Biology, University of Copenhagen, DK-1353 Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
de Hoog CL, Koehler JA, Goldstein MD, Taylor P, Figeys D, Moran MF. Ras binding triggers ubiquitination of the Ras exchange factor Ras-GRF2. Mol Cell Biol 2001; 21:2107-17. [PMID: 11238945 PMCID: PMC86827 DOI: 10.1128/mcb.21.6.2107-2117.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ras is a small GTPase that is activated by upstream guanine nucleotide exchange factors, one of which is Ras-GRF2. GRF2 is a widely expressed protein with several recognizable sequence motifs, including a Ras exchanger motif (REM), a PEST region containing a destruction box (DB), and a Cdc25 domain. The Cdc25 domain possesses guanine nucleotide exchange factor activity and interacts with Ras. Herein we examine if the DB motif in GRF2 results in proteolysis via the ubiquitin pathway. Based on the solved structure of the REM and Cdc25 regions of the Son-of-sevenless (Sos) protein, the REM may stabilize the Cdc25 domain during Ras binding. The DB motif of GRF2 is situated between the REM and the Cdc25 domains, tempting speculation that it may be exposed to ubiquitination machinery upon Ras binding. GRF2 protein levels decrease dramatically upon activation of GRF2, and dominant-negative Ras induces degradation of GRF2, demonstrating that signaling downstream of Ras is not required for the destruction of GRF2 and that binding to Ras is important for degradation. GRF2 is ubiquitinated in vivo, and this can be detected using mass spectrometry. In the presence of proteasome inhibitors, Ras-GRF2 accumulates as a high-molecular-weight conjugate, suggesting that GRF2 is destroyed by the 26S proteasome. Deleting the DB reduces the ubiquitination of GRF2. GRF2 lacking the Cdc25 domain is not ubiquitinated, suggesting that a protein that cannot bind Ras cannot be properly targeted for destruction. Point mutations within the Cdc25 domain that eliminate Ras binding also eliminate ubiquitination, demonstrating that binding to Ras is necessary for ubiquitination of GRF2. We conclude that conformational changes induced by GTPase binding expose the DB and thereby target GRF2 for destruction.
Collapse
Affiliation(s)
- C L de Hoog
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Liang P, Averboukh L, Zhu W, Pardee AB. Ras activation of genes: Mob-1 as a model. Proc Natl Acad Sci U S A 1994; 91:12515-9. [PMID: 7809069 PMCID: PMC45469 DOI: 10.1073/pnas.91.26.12515] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ras oncogenes function by indirectly controlling expression of a subset of yet-undefined genes that are crucial for cell growth and differentiation. In a differential display strategy, numerous genes were identified on the basis of their differential expression in rat embryo fibroblasts transformed by the cooperation of mutant Ha-ras and p53 genes. We demonstrate here that one such gene, designated mob-1, is a downstream target of the Ras signaling pathway. The 417-bp mob-1 promoter, which contains dual NF-kappa B and AP-1 binding sites, confers the Ras inducibility. Oncogenic Ras as well as serum growth factors that activate endogenous Ras can induce mob-1 expression, but with a fundamental difference in that the oncogenic induction is constitutive whereas the serum induction is transient. mob-1 encodes a small secretory protein with a high degree of homology to IP-10, a member of a proinflammatory cytokine family. These findings link chronic inflammatory response to constitutive ras activation and tumorigenesis. Mob-1 may serve as a secreted marker for oncogenic Ha-ras mutations.
Collapse
Affiliation(s)
- P Liang
- Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | |
Collapse
|
7
|
The viral Ki-ras gene must be expressed in the G2 phase if ts Kirsten sarcoma virus-infected NRK cells are to proliferate in serum-free medium. Mol Cell Biol 1987. [PMID: 3031473 DOI: 10.1128/mcb.7.1.444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NRK cells infected with a temperature-sensitive Kirsten sarcoma virus (ts371 KSV) are transformed at 36 degrees C, but are untransformed at 41 degrees C which inactivates the abnormally thermolabile oncogenic p21Ki product of the viral Ki-ras gene. At 41 degrees C, tsKSV-infected NRK cells were arrested in G0/G1 when incubated in serum-free medium, but could then be stimulated to transit G1, replicate DNA, and divide by adding serum at 41 degrees C or dropping the temperature to a p21-activating 36 degrees C without adding serum. When quiescent cells at 41 degrees C were stimulated to transit G1 in serum-free medium by activating p21 at 36 degrees C and then shifted back to the p21-inactivating 41 degrees C in the mid-S phase, they continued replicating DNA but could not transit G2. Reactivating p21 in the G2-arrested cells by once again lowering the temperature to 36 degrees C stimulated a rapid entry into mitosis. By contrast, while serum-stimulated quiescent G0 cells at 41 degrees C replicate DNA and divide, serum did not induce G2-arrested cells to enter mitosis, indicating that serum growth factors may trigger events in the G1 phase that ultimately determine G2 transit. These observations made with the viral ras product suggest that cellular ras proto-oncogene products have a role in G2 transit of normal cells.
Collapse
|
8
|
Whitfield JF, Durkin JP, Franks DJ, Kleine LP, Raptis L, Rixon RH, Sikorska M, Walker PR. Calcium, cyclic AMP and protein kinase C--partners in mitogenesis. Cancer Metastasis Rev 1987; 5:205-50. [PMID: 3030578 DOI: 10.1007/bf00046999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence is steadily mounting that the proto-oncogenes, whose products organize and start the programs that drive normal eukaryotic cells through their chromosome replication/mitosis cycles, are transiently stimulated by sequential signals from a multi-purpose, receptor-operated mechanism (consisting of internal surges of Ca2+ and bursts of protein kinase C activity resulting from phosphatidylinositol 4,5-bisphosphate breakdown and the opening of membrane Ca2+ channels induced by receptor-associated tyrosine-protein kinase activity) and bursts of cyclic AMP-dependent kinase activity. The bypassing or subversion of the receptor-operated Ca2+/phospholipid breakdown/protein kinase C signalling mechanism is probably the basis of the freeing of cell proliferation from external controls that characterizes all neoplastic transformations.
Collapse
|
9
|
Durkin JP, Whitfield JF. The viral Ki-ras gene must be expressed in the G2 phase if ts Kirsten sarcoma virus-infected NRK cells are to proliferate in serum-free medium. Mol Cell Biol 1987; 7:444-9. [PMID: 3031473 PMCID: PMC365087 DOI: 10.1128/mcb.7.1.444-449.1987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
NRK cells infected with a temperature-sensitive Kirsten sarcoma virus (ts371 KSV) are transformed at 36 degrees C, but are untransformed at 41 degrees C which inactivates the abnormally thermolabile oncogenic p21Ki product of the viral Ki-ras gene. At 41 degrees C, tsKSV-infected NRK cells were arrested in G0/G1 when incubated in serum-free medium, but could then be stimulated to transit G1, replicate DNA, and divide by adding serum at 41 degrees C or dropping the temperature to a p21-activating 36 degrees C without adding serum. When quiescent cells at 41 degrees C were stimulated to transit G1 in serum-free medium by activating p21 at 36 degrees C and then shifted back to the p21-inactivating 41 degrees C in the mid-S phase, they continued replicating DNA but could not transit G2. Reactivating p21 in the G2-arrested cells by once again lowering the temperature to 36 degrees C stimulated a rapid entry into mitosis. By contrast, while serum-stimulated quiescent G0 cells at 41 degrees C replicate DNA and divide, serum did not induce G2-arrested cells to enter mitosis, indicating that serum growth factors may trigger events in the G1 phase that ultimately determine G2 transit. These observations made with the viral ras product suggest that cellular ras proto-oncogene products have a role in G2 transit of normal cells.
Collapse
|