1
|
|
2
|
Hung SSC, Wong RCB, Sharov AA, Nakatake Y, Yu H, Ko MSH. Repression of global protein synthesis by Eif1a-like genes that are expressed specifically in the two-cell embryos and the transient Zscan4-positive state of embryonic stem cells. DNA Res 2013; 20:391-402. [PMID: 23649898 PMCID: PMC3738165 DOI: 10.1093/dnares/dst018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1–Eif1al10) and 9 pseudogenes (Eif1al-ps1–Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.
Collapse
Affiliation(s)
- Sandy S C Hung
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
3
|
Tsolmon S, Nakazaki E, Han J, Isoda H. Apigetrin induces erythroid differentiation of human leukemia cells K562: Proteomics approach. Mol Nutr Food Res 2011; 55 Suppl 1:S93-S102. [DOI: 10.1002/mnfr.201000650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/18/2011] [Accepted: 02/21/2011] [Indexed: 01/11/2023]
|
4
|
Xu WL, Wang XL, Wang H, Li XB. Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A. Gene 2006; 389:27-35. [PMID: 17107762 DOI: 10.1016/j.gene.2006.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/29/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
The translation elongation factor 1A, eEF1A, plays an important role in protein synthesis, catalyzing the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. To investigate the role of eEF1A for protein synthesis in cotton fiber development, nine different cDNA clones encoding eukaryotic translation elongation factor 1A were isolated from cotton (Gossypium hirsutum) fiber cDNA libraries. The isolated genes (cDNAs) were designated cotton elongation factor 1A gene GhEF1A1, GhEF1A2, GhEF1A3, GhEF1A4, GhEF1A5, GhEF1A6, GhEF1A7, GhEF1A8, GhEF1A9, respectively. They share high sequence homology at nucleotide level (71-99% identity) in the coding region and at amino acid level (96-99% identity) among each other. Phylogenetic analysis demonstrated that the nine GhEF1A genes can be divided into 5-6 subfamilies, indicating the divergence occurred in structures of the genes as well as the deduced proteins during evolution. Real-time quantitative RT-PCR analysis revealed that GhEF1A genes are differentially expressed in different tissues/organs. Of the nine GhEF1A genes, five are expressed at relatively high levels in young fibers. Further analysis indicated that expressions of the GhEF1As in fiber are highly developmental-regulated, suggesting that protein biosynthesis is very active at the early fiber elongation.
Collapse
Affiliation(s)
- Wen-Liang Xu
- College of Life Sciences, HuaZhong Normal University, Wuhan 430079, P.R. China
| | | | | | | |
Collapse
|
5
|
Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther 2004; 100:257-90. [PMID: 14652113 DOI: 10.1016/j.pharmthera.2003.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the remarkable progress achieved in the treatment of leukemias over the last several years, many problems (multidrug resistance [MDR], cellular heterogeneity, heterogeneous molecular abnormalities, karyotypic instability, and lack of selective action of antineoplastic agents) still remain. The recent progress in tumor molecular biology has revealed that leukemias are likely to arise from disruption of differentiation of early hematopoietic progenitors that fail to give birth to cell lineage restricted phenotypes. Evidence supporting such mechanisms has been derived from studying bone marrow leukemiogenesis and analyzing differentiation of leukemic cell lines in culture that serve as models of erythroleukemic (murine erythroleukemia [MEL] and human leukemia [K562] cells) and myeloid (human promyelocytic leukemia [HL-60] cells) cell maturation. This paper reviews the current concepts of differentiation, the chemical/pharmacological inducing agents developed thus far, and the mechanisms involved in initiation of leukemic cell differentiation. Emphasis was given on commitment and the cell lineage transcriptional factors as key regulators of terminal differentiation as well as on membrane-mediated events and signaling pathways involved in hematopoietic cell differentiation. The developmental program of MEL cells was presented in considerable depth. It is quite remarkable that the erythrocytic maturation of these cells is orchestrated into specific subprograms and gene expression patterns, suggesting that leukemic cell differentiation represents a highly coordinated set of events that lead to irreversible growth arrest and expression of cell lineage restricted phenotypes. In MEL and other leukemic cells, differentiation appears to be accompanied by differentiation-dependent apoptosis (DDA), an event that can be exploited chemotherapeutically. The mechanisms by which the chemical inducers promote differentiation of leukemic cells have been discussed.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | | | | |
Collapse
|
6
|
Sanchis A, Michelena JM, Latorre A, Quicke DL, Gärdenfors U, Belshaw R. The Phylogenetic Analysis of Variable-Length Sequence Data: Elongation Factor–1α Introns in European Populations of the Parasitoid Wasp Genus Pauesia (Hymenoptera: Braconidae: Aphidiinae). Mol Biol Evol 2001; 18:1117-31. [PMID: 11371599 DOI: 10.1093/oxfordjournals.molbev.a003882] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elongation factor-1alpha (EF-1alpha) is a highly conserved nuclear coding gene that can be used to investigate recent divergences due to the presence of rapidly evolving introns. However, a universal feature of intron sequences is that even closely related species exhibit insertion and deletion events, which cause variation in the lengths of the sequences. Indels are frequently rich in evolutionary information, but most investigators ignore sites that fall within these variable regions, largely because the analytical tools and theory are not well developed. We examined this problem in the taxonomically problematic parasitoid wasp genus Pauesia (Hymenoptera: Braconidae: Aphidiinae) using congruence as a criterion for assessing a range of methods for aligning such variable-length EF-1alpha intron sequences. These methods included distance- and parsimony-based multiple-alignment programs (CLUSTAL W and MALIGN), direct optimization (POY), and two "by eye" alignment strategies. Furthermore, with one method (CLUSTAL W) we explored in detail the robustness of results to changes in the gap cost parameters. Phenetic-based alignments ("by eye" and CLUSTAL W) appeared, under our criterion, to perform as well as more readily defensible, but computationally more demanding, methods. In general, all of our alignment and tree-building strategies recovered the same basic topological structure, which means that an underlying phylogenetic signal remained regardless of the strategy chosen. However, several relationships between clades were sensitive both to alignment and to tree-building protocol. Further alignments, considering only sequences belonging to the same group, allowed us to infer a range of phylogenetic relationships that were highly robust to tree-building protocol. By comparing these topologies with those obtained by varying the CLUSTAL parameters, we generated the distribution area of congruence and taxonomic compatibility. Finally, we present the first robust estimate of the European Pauesia phylogeny by using two EF-1alpha introns and 38 taxa (plus 3 outgroups). This estimate conflicts markedly with the traditional subgeneric classification. We recommend that this classification be abandoned, and we propose a series of monophyletic species groups.
Collapse
Affiliation(s)
- A Sanchis
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, 46071 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Talukder AH, Jorgensen HF, Mandal M, Mishra SK, Vadlamudi RK, Clark BF, Mendelsohn J, Kumar R. Regulation of elongation factor-1alpha expression by growth factors and anti-receptor blocking antibodies. J Biol Chem 2001; 276:5636-42. [PMID: 11104760 DOI: 10.1074/jbc.m006824200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor (EGF) family and its receptors regulate normal and cancerous epithelial cell proliferation, a process that could be suppressed by anti-receptor blocking antibodies. Polypeptide elongation factor-1alpha (EF-1alpha) is a multifunctional protein whose levels are positively correlated with the proliferative state of cells. To identify genes, whose expression may be modulated by anti-receptor blocking antibodies, we performed a differential display screening and isolated differentially expressed cDNAs. Isolates from one clone were 100% identical to human EF-1alpha. Both EGF and heregulin-beta1 (HRG) induced EF-1alpha promoter activity and mRNA and protein expression. Growth factor-mediated EF-1alpha expression was effectively blocked by pretreatment with humanized anti-EGF receptor antibody C225 or anti-human epidermal growth factor receptor-2 (HER2) antibody herceptin. Mutants and pharmacological inhibitors of p38(MAPK) and MEK, but not phosphatidylinositol 3-kinase, suppressed both constitutive and HRG-induced stimulation of EF-1alpha promoter activity in MCF-7 cells. Deletion analysis of the promoter suggested the requirement of the -393 to -204 region for growth factor-mediated transcription of EF-1alpha. Fine mapping and point mutation studies revealed a role of the SP1 site in the observed HRG-mediated regulation of the EF-1alpha promoter. In addition, we also provide new evidence to suggest that HRG stimulation of the EF-1alpha promoter involves increased physical interactions with acetylated histone H3 and histone H4. These results suggest that regulation of EF-1alpha expression by extracellular signals that function through human EGF receptor family members that are widely deregulated in human cancers and that growth factor regulation of EF-1alpha expression involve histone acetylation.
Collapse
Affiliation(s)
- A H Talukder
- Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ransom WD, Lao PC, Gage DA, Boss WF. Phosphoglycerylethanolamine posttranslational modification of plant eukaryotic elongation factor 1alpha. PLANT PHYSIOLOGY 1998; 117:949-960. [PMID: 9662537 PMCID: PMC34949 DOI: 10.1104/pp.117.3.949] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 04/03/1998] [Indexed: 05/22/2023]
Abstract
Eukaryotic elongation factor 1alpha (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.
Collapse
Affiliation(s)
- W D Ransom
- Botany Department, North Carolina State University, Raleigh, North Carolina 27695-7612, USA.
| | | | | | | |
Collapse
|
9
|
Kidou S, Ejiri S. Isolation, characterization and mRNA expression of four cDNAs encoding translation elongation factor 1A from rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 1998; 36:137-148. [PMID: 9484469 DOI: 10.1023/a:1005960721762] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Four different cDNA clones encoding protein synthesis elongation factor 1A, eEF1A, were isolated from rice (Oryza sativa L.). The genes encoded by these cDNAs were designated rice elongation factor 1A genes refa1, refa2, refa3 and refa4. The genes encoded identical eEF-1A polypeptides and shared high amino acid identity with eEF1A of other eukaryotes. Southern blot analysis suggested that some of these refa genes may be organized in a cluster on the same chromosome within a short distance. PCR analysis of rice genomic DNA showed that refa1 and refa4, and refa3 and refa2 are in neighboring locations on the rice genome. The mRNAs of the four refa genes accumulated to nearly equal levels in a variety of tissues and at different stages of growth. Suspension-cultured cells were the most abundant in refa mRNAs. Dormant seeds contained a small amount of the four refa mRNAs. Transcript accumulation was highly induced after seed germination, and the same expression levels were maintained even in old leaf blades of mature plants.
Collapse
Affiliation(s)
- S Kidou
- Institute for Cell Biology and Genetics, Faculty of Agriculture, Iwate University, Japan
| | | |
Collapse
|
10
|
|
11
|
Rösel H, Kunze G. Cloning and characterization of a TEF gene for elongation factor 1 alpha from the yeast Arxula adeninivorans. Curr Genet 1995; 28:360-6. [PMID: 8590482 DOI: 10.1007/bf00326434] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The translation elongation factor EF-1 alpha appears to play a major role in the control of cell proliferation and ageing in higher eukaryotes. Here we report the cloning of the TEF1 gene encoding the elongation factor 1 alpha of the dimorphic yeast Arxula adeninivorans Ls3. The gene is localized on chromosome 2 from Arxula adeninivorans, comprises 1380 bp and encodes a protein containing 459 amino acids. In contrast to other fungi, a second TEF gene encoding an identical, or nearly identical, polypeptide could not be identified. The transcriptional activity of the TEF1 gene did not change during mycelial growth, whereas a slight decrease could be detected during the yeast growth.
Collapse
Affiliation(s)
- H Rösel
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | |
Collapse
|
12
|
Henderson RA, Krissansen GW, Yong RY, Leung E, Watson JD, Dholakia JN. The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43844-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Characterization of the regulatory elements in the promoter of the human elongation factor-1 alpha gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43956-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Jefferies H, Thomas G, Thomas G. Elongation factor-1 alpha mRNA is selectively translated following mitogenic stimulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41789-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Abstract
Various translation initiation and elongation factors seem to participate in the control of the cellular proliferation and the ageing process in higher eukaryotes. Studies indicate that EF-1 alpha, one of the translation elongation factors, may be one of the major components involved. We here present the cloning of the filamentous fungus P. anserina EF-1 alpha encoding gene and show that strains bearing high fidelity mutations in the EF-1 alpha gene have a drastically increased longevity as well as an impairment in sporulation. This suggests that EF-1 alpha involved in the sexual and senescence processes in lower eukaryotes, through the control of translational errors.
Collapse
Affiliation(s)
- P Silar
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
16
|
Cavallius J, Zoll W, Chakraburtty K, Merrick WC. Characterization of yeast EF-1 alpha: non-conservation of post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1163:75-80. [PMID: 8476932 DOI: 10.1016/0167-4838(93)90281-u] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elongation factor 1 alpha (EF-1 alpha) is an abundant cellular protein and its amino-acid sequence has been inferred from numerous organisms, including bacteria, archaebacteria, plants and animals. In large measure, it would appear that the overall structure has probably been maintained given the 33% identity and 56% similarity of Escherichia coli EF-Tu with human EF-1 alpha. Chemical sequencing of EF-Tu and EF-1 alpha has revealed that these proteins are post-translationally modified. In order to assess the possible function of these modifications, we have chemically sequenced the EF-1 alpha from the lower eukaryote Saccharomyces cerevisiae (yeast). To our surprise, the methylation pattern of yeast EF-1 alpha was quite different from either rabbit or brine shrimp EF-1 alpha with only the trimethyllysine at position 79 conserved although the yeast protein is 81% identical to rabbit EF-1 alpha. A dimethyllysine was observed at position 316 which corresponds to a trimethyllysine in brine shrimp and rabbit EF-1 alpha. The other positions in yeast EF-1 alpha which were methylated were unrelated to the other six possible positions for modification observed in brine shrimp or rabbit EF-1 alpha. In addition, the unique glyceryl-phosphorylethanolamine observed in mammalian EF-1 alpha and suspected in brine shrimp EF-1 alpha was not found in yeast EF-1 alpha.
Collapse
Affiliation(s)
- J Cavallius
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935
| | | | | | | |
Collapse
|
17
|
Adamou J, Bag J. Alteration of translation and stability of mRNA for the poly(A)-binding protein during myogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:803-12. [PMID: 1425688 DOI: 10.1111/j.1432-1033.1992.tb17351.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of synthesis of various factors involved in mRNA translation during differentiation of muscle cells was examined. The steady-state levels of mRNAs coding for eukaryotic initiation factor (eIF) 2 alpha, 2 beta and elongation factor (eEF)-1 alpha were measured in both proliferating rat L6 myoblast and differentiated myotubes. The steady-state levels of these mRNAs were not altered during myogenesis. Furthermore, the distribution of these mRNAs between repressed and translated populations remained unchanged. Recent studies suggest a role for poly(A)-binding protein (PABP) in translation initiation. Therefore, we also examined the expression of PABP mRNA during myogenesis. The PABP mRNA was less abundant in myotubes compared to myoblasts. However, the synthesis of PABP remained unchanged. In myoblasts, approximately 50-60% of the total mRNA was associated with polyribosomes, whereas in myotubes more than 80% of the mRNA was associated with polyribosomes. These results, therefore, suggest that the PABP mRNA was more efficiently translated in differentiated myotubes than in the proliferating myoblasts. Measurement of the stability and transcription of PABP mRNA showed that, while transcription was not affected during myogenesis, the stability of the mRNA was reduced in differentiated cells. The t1/2 of PABP mRNA in myoblasts was 13 h compared to 7.5 h in myotubes. This observation suggests that the reduced steady-state level of PABP mRNA in myotube were largely due to the change in stability of this mRNA during myogenesis.
Collapse
Affiliation(s)
- J Adamou
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
18
|
Rousseau D, Khochbin S, Gorka C, Lawrence JJ. Regulation of histone H1(0) accumulation during induced differentiation of murine erythroleukemia cells. J Mol Biol 1991; 217:85-92. [PMID: 1988682 DOI: 10.1016/0022-2836(91)90613-b] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone H1(0) is one of the potential candidates that may contribute to the onset and stabilization of a genetic program during induced differentiation of murine erythroleukemia cells. In an attempt to understand better the role of H1(0) in this process we have tried to determine at which level the regulation of its induced accumulation occurs. Protein H1(0) was found to increase by a factor of 3 while its mRNA increased by a factor of 14, due to activation of gene transcription. As shown by H1(0) half-life measurements, the difference between the actual amount of H1(0) and that expected from the amount of mRNA was not due to increased turnover of the protein. Fractionation of the translational apparatus at several times during induction, revealed that H1(0) mRNA was efficiently transferred to the high molecular weight polysomes. The rate of synthesis of H1(0) was also increased by a factor of 4. Taken together, these results suggest the existence of a strong control at the translational level, which regulates H1(0) accumulation.
Collapse
Affiliation(s)
- D Rousseau
- Unité INSERM 309, Département de Biologie Moléculaire et Structurale, CEN-Grenoble, France
| | | | | | | |
Collapse
|
19
|
Conroy SC, Dever TE, Owens CL, Merrick WC. Characterization of the 46,000-dalton subunit of eIF-4F. Arch Biochem Biophys 1990; 282:363-71. [PMID: 2241157 DOI: 10.1016/0003-9861(90)90130-q] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F are required for the ATP-dependent binding of mRNA to the ribosome. To extend the characterization of the eIF-4A-like subunit of eIF-4F, a cDNA clone encoding eIF-4A has been isolated from a rabbit liver cDNA library and sequenced. The clone is almost full length for the coding region and complete for the 3' noncoding region. The sequence of the rabbit cDNA has been compared to the sequence of the two similar, but not identical, genes and cDNAs encoding mouse eIF-4A (termed eIF-4AI and eIF-4AII). The rabbit cDNA sequence is very similar to the mouse eIF-4AI genomic and liver cDNA sequence with 100% identity at the amino acid level and 90% identity at the nucleotide level within the protein coding region; however, there is very little similarity in the 3' noncoding region. Amino acid sequencing of purified rabbit reticulocyte eIF-4A protein indicates that it is eIF-4AI (encoded by the eIF-4AI gene and cDNA) and none of the amino acid residues sequenced are in disagreement with those predicted from the mouse liver or rabbit liver cDNA sequences. Subsequently, we have analyzed the p46 subunit of eIF-4F, a three subunit protein whose molecular weights have been estimated by sodium dodecyl sulfate gel electrophoresis to be 220,000, 46,000 and 24,000. The p46 subunit has physical properties similar to eIF-4A. This subunit was isolated from rabbit reticulocyte eIF-4F and sequenced chemically. Our results indicate that this peptide is a mixture of eIF-4AI and eIF-4AII in an approximate ratio of 4 to 1, respectively. No eIF-4AII was observed in our rabbit reticulocyte eIF-4A preparation. Therefore we have concluded that either the eIF-4AI and the eIF-4AII proteins were resolved from each other in the purification of rabbit reticulocyte eIF-4A or that eIF-4AII preferentially associates with the p220 and p24 subunits of eIF-4F. Evidence favoring the latter possibility is discussed.
Collapse
Affiliation(s)
- S C Conroy
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
20
|
Smigielski AJ. Characterization of a plasmid involved with cointegrate formation and lactose metabolism in Lactococcus lactis subsp. lactis OZS1. Arch Microbiol 1990; 154:560-5. [PMID: 2177590 DOI: 10.1007/bf00248837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 55 kilobase (kb) plasmid (pOZS550) in the non-clumping Lactococcus lactis subsp. lactis strain OZS1 carrying genes for lactose metabolism was characterised. A mobilizable cointegrate plasmid which is formed between pOZS550 and pOZS448 carries the necessary information for conjugation and transfer. Cointegrate formation was found to involve an insertional element located on pOZS550. The insertion sequence was found to be identical to ISS1 located on pSK08 in the clumping L. lactis subsp. lactis strain ML3. Restriction maps of pOZS550 and pSK08 were similar suggesting a close ancestral relationship, although pSK08, in addition to the lactose metabolism genes, expressed genes for proteinase activity and cell clumping, which were not expressed by pOZS550, and carried two copies of ISS1 compared to one on pOZS550. Furthermore, hybridization of the 18 base pair inverted repeat, of the insertion sequence, with various L. lactis subsp. lactis strains and two L. lactis subsp. cremoris strains showed moderate to strong hybridization to one plasmid in each organism.
Collapse
Affiliation(s)
- A J Smigielski
- Department of Nutrition and Food Sciences, Utah State University
| |
Collapse
|
21
|
Walldorf U, Hovemann BT. Apis mellifera cytoplasmic elongation factor 1 alpha (EF-1 alpha) is closely related to Drosophila melanogaster EF-1 alpha. FEBS Lett 1990; 267:245-9. [PMID: 2116322 DOI: 10.1016/0014-5793(90)80936-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using low stringency hybridisation with a Drosophila melanogaster EF-1 alpha gene fragment we have isolated a genomic DNA clone encoding elongation factor 1 alpha (EF-1 alpha) from Apis mellifera. The hybridising Apis mellifera sequence could be delineated to two small EcoRI fragments that were also revealed by genomic Southern hybridisation. By comparison with the corresponding Drosophila melanogaster data the complete translational reading frame has been deduced. It is interrupted by two intervening sequences of 220 and about 790 nucleotides. Comparison with known eucaryotic EF-1 alpha sequences further confirms that certain amino acid sequences seem to be invariable within the EF-1 alpha protein family.
Collapse
Affiliation(s)
- U Walldorf
- Center for Molecular Biology Heidelberg, FRG
| | | |
Collapse
|
22
|
Mehta KD, Leung D, Lefebvre L, Smith M. The ANB1 locus of Saccharomyces cerevisiae encodes the protein synthesis initiation factor eIF-4D. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38959-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Dever T, Costello C, Owens C, Rosenberry T, Merrick W. Location of Seven Post-translational Modifications in Rabbit Elongation Factor 1α Including Dimethyllysine, Trimethyllysine, and Glycerylphosphorylethanolamine. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47093-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Wang E, Moutsatsos IK, Nakamura T. Cloning and molecular characterization of a cDNA clone to statin, a protein specifically expressed in nonproliferating quiescent and senescent fibroblasts. Exp Gerontol 1989; 24:485-99. [PMID: 2632282 DOI: 10.1016/0531-5565(89)90055-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- E Wang
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
25
|
Smit-McBride Z, Dever TE, Hershey JWB, Merrick WC. Sequence Determination and cDNA Cloning of Eukaryotic Initiation Factor 4D, the Hypusine-containing Protein. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94226-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Reddy NS, Roth WW, Bragg PW, Wahba AJ. Isolation and mapping of a gene for protein synthesis initiation factor 4A and its expression during differentiation of murine erythroleukemia cells. Gene X 1988; 70:231-43. [PMID: 3215517 DOI: 10.1016/0378-1119(88)90195-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic protein synthesis initiation factor 4A (eIF-4A), a 46-kDa polypeptide, is involved both in mRNA cap recognition and in the binding of mRNA to 40S ribosomal subunits. A 41-mer oligodeoxynucleotide probe was synthesized complementary to a portion of the published coding sequence of eIF-4A mRNA [Nielsen et al., Nucleic Acids Res. 13 (1985) 6867-6870] and used to screen a mouse genomic library. We have isolated and characterized a full-length clone from that library. The eIF-4A sequence is contained in eleven exons. The eleventh exon also has the 3'-nontranslated sequence and two separate polyadenylation sites. Northern-blot analysis of mouse poly(A)+RNA indicates that there are several distinct mRNA species coding for eIF-4A. Two of these contain the same coding sequence and differ only in the length of the 3'-nontranslated region. Two of the eIF-4A mRNAs are therefore likely to be the result of differential processing at the 3'-end. We have used a fragment of the genomic clone to measure the steady-state levels of eIF-4A mRNA during the induced differentiation of murine erythroleukemia cells. S1 nuclease protection experiments demonstrated that by the fourth day after induction eIF-4A mRNA declined to 25% of its steady-state level in uninduced cells. In contrast, the steady-state level of beta-globin mRNA increased dramatically during differentiation. In vitro transcription assays using nuclei isolated from uninduced and induced cells show that the rate of transcription of eIF-4A mRNA was 40% greater in differentiated cells, indicating a posttranscriptional component is involved in the regulation of the steady-state mRNA level.
Collapse
Affiliation(s)
- N S Reddy
- Department of Biochemistry, University of Mississipi Medical Center, Jackson 39216-4505
| | | | | | | |
Collapse
|