1
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
3
|
Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V, Romascano D, Percudani R, van Dyk LF, Hernandez N, Teichmann M, Dieci G. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res 2011; 39:5499-512. [PMID: 21421562 PMCID: PMC3141230 DOI: 10.1093/nar/gkr074] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3′-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T≥4 stretch within 50 bp of 3′-flanking region. In vitro analysis of tDNAs with a distanced T≥4 revealed the existence of non-canonical terminators resembling degenerate T≥5 elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3′ trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3′-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3′-trailer sequences with the potential to contribute novel functional ncRNAs.
Collapse
Affiliation(s)
- Andrea Orioli
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hamada M, Sakulich AL, Koduru SB, Maraia RJ. Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. J Biol Chem 2000; 275:29076-81. [PMID: 10843998 DOI: 10.1074/jbc.m003980200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order for RNA polymerase (pol) III to produce a sufficient quantity of RNAs of appropriate structure, initiation, termination, and reinitiation must be accurate and efficient. Termination-associated factors have been shown to facilitate reinitiation and regulate transcription in some species. Suppressor tRNA genes that differ in the dT(n) termination signal were examined for function in Schizosaccharomyces pombe. We also developed an S. pombe extract that is active for tRNA transcription that is described here for the first time. The ability of this tRNA gene to be transcribed in extracts from different species allowed us to compare termination in three model systems. Although human pol III terminates efficiently at 4 dTs and S. pombe at 5 dTs, Saccharomyces cerevisiae pol III requires 6 dTs to direct comparable but lower termination efficiency and also appears qualitatively distinct. Interestingly, this pattern of sensitivity to a minimal dT(n) termination signal was found to correlate with the sensitivity to alpha-amanitin, as S. pombe was intermediate between human and S. cerevisiae pols III. The results establish that the pols III of S. cerevisiae, S. pombe, and human exhibit distinctive properties and that termination occurs in S. pombe in a manner that is functionally more similar to human than is S. cerevisiae.
Collapse
Affiliation(s)
- M Hamada
- Laboratory of Molecular Growth Regulation, NICHHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | |
Collapse
|
5
|
Nashimoto M, Wesemann DR, Geary S, Tamura M, Kaspar RL. Long 5' leaders inhibit removal of a 3' trailer from a precursor tRNA by mammalian tRNA 3' processing endoribonuclease. Nucleic Acids Res 1999; 27:2770-6. [PMID: 10373595 PMCID: PMC148487 DOI: 10.1093/nar/27.13.2770] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian tRNA 3' processing endoribonuclease (3' tRNase) can remove a 3' trailer from various pre-tRNAs without 5' leader nucleotides. To examine how 5[prime] leader sequences affect 3' processing efficiency, we performed in vitro 3' processing reactions with purified pig 3' tRNase and pre-tRNAArgs containing a 13-nt 3' trailer and a 5[prime] leader of various lengths. The 3' processing was slightly stimulated by 5[prime] leaders containing up to 7 nt, whereas leaders of 9 nt or longer severely inhibited the reaction. Structure probing indicated that the 5' leader sequences had little effect on pre-tRNA folding. Similar results were obtained using pre-tRNA(Val)s containing a 5' leader of various lengths. We also investigated whether 3'tRNase can remove 3' trailers that are stably base-paired with 5' leaders to form an extended acceptor stem. Even such small 5' leaders as 3 and 6 nt, when base-paired with a 3' trailer, severely hindered removal of the 3' trailer by 3' tRNase.
Collapse
Affiliation(s)
- M Nashimoto
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
6
|
Thomann HU, Schmutzler C, Hüdepohl U, Blow M, Gross HJ. Genes, variant genes and pseudogenes of the human tRNA(Val) gene family. Expression and pre-tRNA maturation in vitro. J Mol Biol 1989; 209:505-23. [PMID: 2585499 DOI: 10.1016/0022-2836(89)90590-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nine different members of the human tRNA(Val) gene family have been cloned and characterized. Only four of the genes code for one of the known tRNA(Val) isoacceptors. The remaining five genes carry mutations, which in two cases even affect the normal three-dimensional tRNA structure. Each of the genes is transcribed by polymerase III in a HeLa cell nuclear extract, but their transcription efficiencies differ by up to an order of magnitude. Conserved sequences immediately flanking the structural genes that could serve as extragenic control elements were not detected. However, short sequences in the 5' flanking region of two genes show striking similarity with sequences upstream from two Drosophila melanogaster tRNA(Val) genes. Each of the human tRNA(Val) genes has multiple, i.e. two to four, transcription initiation sites. In most cases, transcription termination is caused by oligo(T) sequences downstream from the structural genes. However, the signal sequences ATCTT and CTTCTT also serve as effective polymerase III transcription terminators. The precursors derived from the four tRNA(Val) genes coding for known isoacceptors and those derived from two mutant genes are processed first at their 3' and subsequently at their 5' ends to yield mature tRNAs. The precursor derived from a third mutant gene is incompletely maturated at its 3' end, presumably as a consequence of base-pairing between 5' and 3' flanking sequences. Finally, precursors encoded by the genes that carry mutations affecting the tRNA tertiary structure are completely resistant to 5' and 3' processing.
Collapse
Affiliation(s)
- H U Thomann
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
7
|
McBride OW, Pirtle IL, Pirtle RM. Localization of three DNA segments encompassing tRNA genes to human chromosomes 1, 5, and 16: proposed mechanism and significance of tRNA gene dispersion. Genomics 1989; 5:561-73. [PMID: 2613239 DOI: 10.1016/0888-7543(89)90024-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chromosomal locations of three cloned human DNA fragments encompassing tRNA genes have been determined by Southern analysis of human-rodent somatic cell hybrid DNAs with subfragments from these cloned genes and flanking sequences used as hybridization probes. These three DNA segments have been assigned to human chromosomes 1, 5, and 16, and homologous sequences are probably located on chromosome 14 and a separate locus on chromosome 1. These studies, combined with previous results, indicate that tRNA genes and pseudogenes are dispersed on at least seven different human chromosomes and suggest that these sequences will probably be found on most, if not all, human chromosomes. Short (8-12 nucleotide) direct terminal repeats flank many of the dispersed tRNA genes. The presence of these flanking repeats, combined with the dispersion of tRNA genes throughout the human genome, suggests that many of these genes may have arisen by an RNA-mediated retroposition mechanism. The possible functional significance of this gene dispersion is considered.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Southern
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 5
- DNA/genetics
- Genes
- Humans
- Hybrid Cells
- Multigene Family
- Pseudogenes
- RNA, Transfer/genetics
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Val/genetics
- Repetitive Sequences, Nucleic Acid
- Restriction Mapping
Collapse
Affiliation(s)
- O W McBride
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
8
|
Wahab SZ, Holmes WM, Zehner ZE. Flanking sequences are required for efficient transcription and stable complex formation for the human tRNAiMet3-coding gene. Gene 1989; 77:361-70. [PMID: 2753363 DOI: 10.1016/0378-1119(89)90084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An analysis of 5' and 3' deletions of the human tRNAiMet3 gene has revealed upstream regions required for efficient transcription and stable complex formation in vitro. The 5' boundary of this essential region lies between nucleotides -39 to -18 (start point = + 1), and it has been shown that 3'-flanking sequences near the first termination site are also important for stable complex formation. The transcriptional efficiency of two non-allelic loci (TMET3 and TMET2) has been compared and TMET2 is more active. An analysis of chimeric (hybrid) genes indicates that much of the difference seen is due to 5'-flanking sequences and that there may be complex interactions between 5' and 3' sequences.
Collapse
Affiliation(s)
- S Z Wahab
- Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614
| | | | | |
Collapse
|