1
|
Ng JHJ, Tachedjian M, Wang LF, Baker ML. Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto. BMC Genomics 2017; 18:388. [PMID: 28521747 PMCID: PMC5437515 DOI: 10.1186/s12864-017-3760-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bats are an extremely successful group of mammals and possess a variety of unique characteristics, including their ability to co-exist with a diverse range of pathogens. The major histocompatibility complex (MHC) is the most gene dense and polymorphic region of the genome and MHC class II (MHC-II) molecules play a vital role in the presentation of antigens derived from extracellular pathogens and activation of the adaptive immune response. Characterisation of the MHC-II region of bats is crucial for understanding the evolution of the MHC and of the role of pathogens in shaping the immune system. RESULTS Here we describe the relatively contracted MHC-II region of the Australian black flying-fox (Pteropus alecto), providing the first detailed insight into the MHC-II region of any species of bat. Twelve MHC-II genes, including one locus (DRB2) located outside the class II region, were identified on a single scaffold in the bat genome. The presence of a class II locus outside the MHC-II region is atypical and provides evidence for an ancient class II duplication block. Two non-classical loci, DO and DM and two classical, DQ and DR loci, were identified in P. alecto. A putative classical, DPB pseudogene was also identified. The bat's antigen processing cluster, though contracted, remains highly conserved, thus supporting its importance in antigen presentation and disease resistance. CONCLUSIONS This detailed characterisation of the bat MHC-II region helps to fill a phylogenetic gap in the evolution of the mammalian class II region and is a stepping stone towards better understanding of the immune responses in bats to viral, bacterial, fungal and parasitic infections.
Collapse
Affiliation(s)
- Justin H J Ng
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
| | - Mary Tachedjian
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC, 3220, Australia.
| |
Collapse
|
2
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
3
|
Marshall LJ, Dunham L, Major EO. Transcription factor Spi-B binds unique sequences present in the tandem repeat promoter/enhancer of JC virus and supports viral activity. J Gen Virol 2010; 91:3042-52. [PMID: 20826618 PMCID: PMC3052566 DOI: 10.1099/vir.0.023184-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often fatal demyelinating disease caused by lytic infection of oligodendrocytes with JC virus (JCV). The development of PML in non-immunosuppressed individuals is a growing concern with reports of mortality in patients treated with mAb therapies. JCV can persist in the kidneys, lymphoid tissue and bone marrow. JCV gene expression is restricted by non-coding viral regulatory region sequence variation and cellular transcription factors. Because JCV latency has been associated with cells undergoing haematopoietic development, transcription factors previously reported as lymphoid specific may regulate JCV gene expression. This study demonstrates that one such transcription factor, Spi-B, binds to sequences present in the JCV promoter/enhancer and may affect early virus gene expression in cells obtained from human brain tissue. We identified four potential Spi-B-binding sites present in the promoter/enhancer elements of JCV sequences from PML variants and the non-pathogenic archetype. Spi-B sites present in the promoter/enhancers of PML variants alone bound protein expressed in JCV susceptible brain and lymphoid-derived cell lines by electromobility shift assays. Expression of exogenous Spi-B in semi- and non-permissive cells increased early viral gene expression. Strikingly, mutation of the Spi-B core in a binding site unique to the Mad-4 variant was sufficient to abrogate viral activity in progenitor-derived astrocytes. These results suggest that Spi-B could regulate JCV gene expression in susceptible cells, and may play an important role in JCV activity in the immune and nervous systems.
Collapse
Affiliation(s)
- Leslie J Marshall
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1296, USA
| | | | | |
Collapse
|
4
|
The locus control region of the MHC class II promoter acts as a repressor element, the activity of which is inhibited by CIITA. Mol Immunol 2009; 47:825-32. [PMID: 19897249 DOI: 10.1016/j.molimm.2009.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/30/2009] [Indexed: 11/22/2022]
Abstract
The closest region of the promoter of MHC II genes and particularly three conserved boxes (X, Y and S) are fundamental for the transcriptional regulation. A second set of conserved sequences is present approximately 1200-1500 bp upstream in opposite orientation. In transient transfection experiments in IFN-gamma-treated macrophages and in B lymphocytes, we determined the expression of a fragment of 2035 bp of the I-Abeta gene, which contains the upstream boxes. Mutation of the distal boxes increased induction, thereby suggesting a repressive effect on transcription. In vitro, the proximal and distal ends of I-Abeta promoter were ligated in the presence of nuclear extracts from untreated macrophages but not when the extracts were obtained from IFN-gamma-stimulated cells. The mutation of distal or proximal boxes resulted in a decrease in the ligation assay. The addition of recombinant CIITA to untreated nuclear extracts decreased the capacity of the promoter to be ligated. Finally, we observed increased capacity to ligate the promoter in extracts from B cells lacking CIITA, but not from B cells lacking RFXANK. These results allow us to postulate a model where the proteins in the proximal and distal conserved sequences interact. When CIITA is induced, these proteins make an enhanceosome, allowing chromatin to open and initiate transcription.
Collapse
|
5
|
Majumder P, Gomez JA, Chadwick BP, Boss JM. The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. ACTA ACUST UNITED AC 2008; 205:785-98. [PMID: 18347100 PMCID: PMC2292219 DOI: 10.1084/jem.20071843] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Knockdown of the insulator factor CCCTC binding factor (CTCF), which binds XL9, an intergenic element located between HLA-DRB1 and HLA-DQA1, was found to diminish expression of these genes. The mechanism involved interactions between CTCF and class II transactivator (CIITA), the master regulator of major histocompatibility complex class II (MHC-II) gene expression, and the formation of long-distance chromatin loops between XL9 and the proximal promoter regions of these MHC-II genes. The interactions were inducible and dependent on the activity of CIITA, regulatory factor X, and CTCF. RNA fluorescence in situ hybridizations show that both genes can be expressed simultaneously from the same chromosome. Collectively, the results suggest a model whereby both HLA-DRB1 and HLA-DQA1 loci can interact simultaneously with XL9, and describe a new regulatory mechanism for these MHC-II genes involving the alteration of the general chromatin conformation of the region and their regulation by CTCF.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
6
|
Rybtsova N, Leimgruber E, Seguin-Estévez Q, Dunand-Sauthier I, Krawczyk M, Reith W. Transcription-coupled deposition of histone modifications during MHC class II gene activation. Nucleic Acids Res 2007; 35:3431-41. [PMID: 17478518 PMCID: PMC1904273 DOI: 10.1093/nar/gkm214] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5' end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Reith
- *To whom correspondence should be addressed. Tel: +41 22 379 56 66; Fax: +41 22 379 57 46;
| |
Collapse
|
7
|
Wright KL, Ting JPY. Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 2006; 27:405-12. [PMID: 16870508 DOI: 10.1016/j.it.2006.07.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/23/2006] [Accepted: 07/12/2006] [Indexed: 02/02/2023]
Abstract
This review describes recent advances in understanding how epigenetic events control MHC-class-II-family (MHC-II) gene expression. To address this issue, two phases of gene transcription have to be considered. First, the control of MHC-II by chromatin-modifying events such as histone acetylation, methylation, deacetylation, ubiquitination and the interplay between these different epigenetic events will be examined. The interactions of chromatin-modifying enzymes with class II transactivator (CIITA) and relevant DNA-binding proteins for activating and silencing MHC-II gene transcription will be reviewed. Second, the transcriptional control of the promoter of CIITA, the master regulator of MHC-II, by DNA methylation and chromatin modification will be discussed, and the novel role of noncoding RNA will be explored. Finally, the relevance of these findings to infection, transplantation and cancer will be reviewed.
Collapse
Affiliation(s)
- Kenneth L Wright
- H. Lee Moffitt Cancer Center and Research Institute, and the Department of Interdisciplinary Oncology, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
8
|
Giorda E, Sibilio L, Martayan A, Feriotto G, Bianchi N, Mischiati C, Di Rosa F, Pozzi L, Gambari R, Giacomini P. Modular usage of the HLA-DRA promoter in extra-hematopoietic and hematopoietic cell types of transgenic mice. FEBS J 2005; 272:3214-26. [PMID: 15955077 DOI: 10.1111/j.1742-4658.2005.04740.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II MHC genes (for example, the human HLA-DRA gene) are expressed at the cell surface in many professional and nonprofessional antigen-presenting cells in a variety of anatomical locations. Here, we report about 13 mouse transgenic lines (11 of which have not been previously described) generated with four distinct sets of DRA transgenes carrying progressive, informative 5' and 3' deletions. DRA expression was assessed in B lymphocytes, dendritic cells, macrophages, and extra-hematopoietic cells (particularly kidney epithelial cells). A compact transcriptional unit was identified that efficiently directs DRA expression [both constitutive and interferon (IFN)-gamma induced] in extra-hematopoietic tissues and dendritic cells. It extends from position -266 upstream of the transcription initiation site to position +119 downstream of the last DRA exon. The same fragment, however, did not efficiently direct IFN-gamma-induced DRA expression in macrophages, that required additional 5' sequences. Thus, IFN-gamma uses distinct promoter segments and mechanisms to up-regulate class II in different cell lineages. In contrast to previous results in transgenic mice expressing murine class II transgenes, we were unable to generate reproducible patterns of HLA-DRA expression in B cells.
Collapse
Affiliation(s)
- Ezio Giorda
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zika E, Ting JPY. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes. Curr Opin Immunol 2005; 17:58-64. [PMID: 15653312 DOI: 10.1016/j.coi.2004.11.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances have shown the crucial role of histone-modifying enzymes in controlling gene activation and repression. This led to the 'histone code' hypothesis, which proposes that combinations of histone modifications work in concert to affect specific gene expression. Mounting evidence suggests that the class II transactivator modulates promoter accessibility by coordinating the recruitment of chromatin modifiers in a time-dependent fashion. MHC-II expression is exquisitely controlled by these highly specific, coordinated and dynamic interactions at the promoter.
Collapse
Affiliation(s)
- Eleni Zika
- Lineberger Comprehensive Cancer Center, CB#7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
10
|
Testa A, Donati G, Yan P, Romani F, Huang THM, Viganò MA, Mantovani R. Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem 2005; 280:13606-15. [PMID: 15647281 DOI: 10.1074/jbc.m414039200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is a prototypical promoter element, almost invariably found between -60 and -100 upstream of the major transcription start site. It is bound and activated by the histone fold trimer NF-Y. We performed chromatin immunoprecipitation (ChIP) on chip experiments on two different CpG islands arrays using chromatin from hepatic HepG2 and pre-B cell leukemia NALM-6 cell lines, with different protocols of probe preparation and labeling. We analyzed and classified 239 known or predicted targets; we validated several by conventional ChIPs with anti-YB and anti-YC antibodies, in vitro EMSAs, and ChIP scanning. The importance of NF-Y binding for gene expression was verified by the use of a dominant negative NF-YA mutant. All but four genes are new NF-Y targets, falling into different functional categories. This analysis reinforces the notion that NF-Y is an important regulator of cell growth, and novel unexpected findings emerged from this unbiased approach. (i) A remarkable proportion of NF-Y targets, 40%, are complex transcriptional units composed of divergent, convergent, and tandem promoters. (ii) 40-50% of NF-Y sites are not in core promoters but are in introns or at distant 3' or 5' locations. The abundance of "unorthodox" CCAAT positions highlights an unexpected complexity of the NF-Y-mediated transcriptional network.
Collapse
Affiliation(s)
- Anna Testa
- Dipartimento di Biologia Animale, Università di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Krawczyk M, Peyraud N, Rybtsova N, Masternak K, Bucher P, Barras E, Reith W. Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CIITA. THE JOURNAL OF IMMUNOLOGY 2004; 173:6200-10. [PMID: 15528357 DOI: 10.4049/jimmunol.173.10.6200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC-II) genes are regulated by an enhanceosome complex containing two gene-specific transcription factors, regulatory factor X complex (RFX) and CIITA. These factors assemble on a strictly conserved regulatory module (S-X-X2-Y) found immediately upstream of the promoters of all classical and nonclassical MHC-II genes as well as the invariant chain (Ii) gene. To identify new targets of RFX and CIITA, we developed a computational approach based on the unique and highly constrained architecture of the composite S-Y motif. We identified six novel S'-Y' modules situated far away from the promoters of known human RFX- and CIITA-controlled genes. Four are situated at strategic positions within the MHC-II locus, and two are found within the Ii gene. These S'-Y' modules function as transcriptional enhancers, are bona fide targets of RFX and CIITA in B cells and IFN-gamma-induced cells, and induce broad domains of histone hyperacetylation. These results reveal a hitherto unexpected level of complexity involving long distance control of MHC-II expression by multiple distal regulatory elements.
Collapse
Affiliation(s)
- Michal Krawczyk
- University of Geneva Medical School, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Masternak K, Peyraud N, Krawczyk M, Barras E, Reith W. Chromatin remodeling and extragenic transcription at the MHC class II locus control region. Nat Immunol 2003; 4:132-7. [PMID: 12524537 DOI: 10.1038/ni883] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 12/05/2002] [Indexed: 11/08/2022]
Abstract
In vivo, a wild-type pattern of major histocompatibility complex (MHC) class II expression requires a locus control region (LCR). Whereas the role of promoter-proximal MHC class II regulatory sequences is well established, the function of the distal LCR remained obscure. We show here that this LCR is bound by the MHC class II-specific transactivators regulatory factor X (RFX) and class II transactivator (CIITA). Binding of these factors induces long-range histone acetylation, RNA polymerase II recruitment and the synthesis of extragenic transcripts within the LCR. The finding that RFX and CIITA regulate the function of the MHC class II LCR reveals an unexpected degree of complexity in the mechanisms controlling MHC class II gene expression.
Collapse
|
13
|
Zhu G, Flies DB, Tamada K, Sun Y, Rodriguez M, Fu YX, Chen L. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Ealpha)-transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2671-6. [PMID: 11509610 DOI: 10.4049/jimmunol.167.5.2671] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction of 4-1BB (CD137) and its ligand (4-1BBL) is thought to positively regulate cell-mediated and humoral immune responses. We have prepared transgenic mouse strains that express 4-1BBL cDNA under the control of MHC class II I-Ealpha promoter. The 4-1BBL-transgenic mice show progressive splenomegaly and selective depletion of B220(+) B cells accompanied with low levels of circulating IgG and defective humoral responses to Ag challenge. In addition, splenocytes from the transgenic mice fail to provide stimulation for allogeneic T cells in both lymphoproliferative and CTL responses in vitro, whereas their T cells remain functionally normal. Our results reveal unexpected functions of 4-1BBL in the regulation of humoral immune responses and Ag presentation.
Collapse
MESH Headings
- 4-1BB Ligand
- Aging/immunology
- Animals
- Antibody Formation
- Antigen Presentation
- Antigens, CD
- B-Lymphocytes/immunology
- Base Sequence
- DNA, Complementary/genetics
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- In Vitro Techniques
- Ligands
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Phenotype
- Promoter Regions, Genetic
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- G Zhu
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Mischiati C, Feriotto G, Bianchi N, Rutigliano C, Giacomini P, Gambari R. Analysis of the human HLA-DRA gene upstream region: evidence for a stem-loop array directed by nuclear factors. Biochimie 1999; 81:219-28. [PMID: 10385003 DOI: 10.1016/s0300-9084(99)80055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sequence analysis of the far-upstream region of the human HLA-DRA gene has revealed the presence of Y' and X' boxes, highly homologous to the well characterized Y and X boxes present within the proximal-promoter region. Comparison of Y, Y', X, and X' box sequences present within different class II MHC genes of different species demonstrates that these boxes are conserved during evolution, suggesting an important role in regulation of gene expression. The far-upstream region and the proximal promoter region of the class II MHC genes could be organized in secondary structures, as suggested for the EA gene, the murine counterpart of the human HLA-DRA gene. The essential feature of this model is a dimerization of the proteins binding to X and X' and/or Y and Y' boxes resulting in a loop-out of the intervening DNA and a rapprochement of the far-upstream and proximal-promoter regions, and consequently of any proteins binding to them. We set up an in vitro approach in order to determine whether proteins bound to sequences present within far-upstream and proximal-promoter regions of the human HLA-DRA gene could direct a secondary structure assembly of regulative regions. Moreover, by gel retardation and DNase I footprinting assays, we demonstrate that similar proteins bind to Y and Y' boxes and, among these proteins, NF-Y was unambiguously identified by antibody-super shift experiments. Taken together, the data presented in this paper provide evidence supporting the hypothesis that a stem-loop array of the 5'-upstream region of the human HLA-DRA gene could be directed by nuclear factors. In this manner, additional nuclear factors bound to the far region could be driven in close proximity of the transcription initiation site.
Collapse
Affiliation(s)
- C Mischiati
- Department of Biochemistry and Molecular Biology, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Longley J, Ding TG, Levin D, Lewis J, Edelson R, Tigelaar R, Flavell R. Regulation of transgenic class II major histocompatibility genes in murine Langerhans cells. J Invest Dermatol 1995; 104:329-34. [PMID: 7860996 DOI: 10.1111/1523-1747.ep12665365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
I-E is a class II major histocompatibility complex molecule normally expressed by Langerhans cells. A series of transgenic mice were developed previously that carry E alpha d gene constructs with promoter-region deletions that cause expression of I-E by different cell types when maintained on a B6 (I-E[-]) genetic background. To study cis-acting gene sequences that regulate expression of class II proteins by Langerhans cells, we identified transgenic I-E expression by tissue immunoperoxidase staining and by epidermal cell suspension immunofluorescence cytometry. Mice with a transgene containing 1.4 kilobase pairs (kb) of flanking sequence 5' to the E alpha initiation site expressed barely detectable levels of I-E on a tiny percentage of Langerhans cells, indicating that sequences promoting Langerhans cell expression of E alpha exist between 2.0 and 1.4 kb 5' of the E alpha initiation site. Removal of an additional 170 bp of 5' flanking sequence caused near-normal levels of expression by approximately one third of epidermal Langerhans cells, which contrasts with studies that showed minimal transgene expression by splenic dendritic cells in these animals. Thus, sequences between 1.4 and 1.23 kb 5' of the E alpha initiation site decrease expression of I-E by epidermal Langerhans cells, but enable I-E expression by splenic dendritic cells. These studies identify Langerhans cell-specific regulatory sequences and genetic regions controlling major histocompatibility complex class II gene expression in Langerhans cells and splenic dendritic cells. The genetic regions identified may be particularly important because differential regulation of class II major histocompatibility complex protein synthesis by Langerhans cells and dendritic cells may be crucial to immune functions of intact animals.
Collapse
Affiliation(s)
- J Longley
- Department of Dermatology (Yale Skin Disease Research Center), Yale University School of Medicine, New Haven, CT 06520-8059
| | | | | | | | | | | | | |
Collapse
|
16
|
Van Lint C, Ghysdael J, Paras P, Burny A, Verdin E. A transcriptional regulatory element is associated with a nuclease-hypersensitive site in the pol gene of human immunodeficiency virus type 1. J Virol 1994; 68:2632-48. [PMID: 8139041 PMCID: PMC236741 DOI: 10.1128/jvi.68.4.2632-2648.1994] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Analysis of the chromatin organization of the integrated human immunodeficiency virus type 1 (HIV-1) genome has previously revealed a major constitutive DNase I-hypersensitive site associated with the pol gene (E. Verdin, J. Virol. 65:6790-6799, 1991). In the present report, high-resolution mapping of this site with DNase I and micrococcal nuclease identified a nucleosome-free region centered around nucleotides (nt) 4490 to 4766. A 500-bp fragment encompassing this hypersensitive site (nt 4481 to 4982) exhibited transcription-enhancing activity (two- to threefold) when it was cloned in its natural position with respect to the HIV-1 promoter after transient transfection in U937 and CEM cells. Using in vitro footprinting and gel shift assays, we have identified four distinct binding sites for nuclear proteins within this positive regulatory element. Site B (nt 4519 to 4545) specifically bound four distinct nuclear protein complexes: a ubiquitous factor, a T-cell-specific factor, a B-cell-specific factor, and the monocyte/macrophage- and B-cell-specific transcription factor PU.1/Spi-1. In most HIV-1 isolates in which this PU box was not conserved, it was replaced by a binding site for the related factor Ets1. Factors binding to site C (nt 4681 to 4701) had a DNA-binding specificity similar to that of factors binding to site B, except for PU.1/Spi-1. A GC box containing a binding site for Sp1 was identified (nt 4623 to 4631). Site D (nt 4816 to 4851) specifically bound a ubiquitously expressed factor. These results identify a transcriptional regulatory element associated with a nuclease-hypersensitive site in the pol gene of HIV-1 and suggest that its activity may be controlled by a complex interplay of cis-regulatory elements.
Collapse
Affiliation(s)
- C Van Lint
- Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
17
|
Fukui Y, Yamamoto K, Yokoyama N, Iwanaga T, Kurashima C, Esaki Y, Kimura A, Akashi T, Hirokawa K, Sasazuki T. Restricted expression of transgenic HLA-DRA gene in thymic epithelial cells and its role in acquisition of T cell tolerance to self-superantigens and processed DR alpha-derived peptide. Eur J Immunol 1993; 23:1678-86. [PMID: 8100779 DOI: 10.1002/eji.1830230742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have established a set of transgenic mouse lines in which the HLA-DRA gene was expressed in different cell types. In one line (DR alpha-24), DR alpha E beta b molecules were expressed on thymic medullary and cortical epithelial cells and all lineages of bone marrow-derived antigen-presenting cells (APC) except for thymic macrophages. By contrast, expression of the molecules in another line (DR alpha-30) was found on thymic medullary and cortical epithelial cells but not on bone marrow-derived APC in the thymus and periphery. To evaluate the role of thymic epithelial cells in acquisition of T cell tolerance, comparative analysis of DR alpha-24 and DR alpha-30 was performed. In DR alpha-30, T cells expressing TcR V beta 5 and V beta 11 were eliminated to comparable levels to those in DR alpha-24, suggesting that expression of the DR alpha E beta b molecules on thymic epithelial cells are sufficient for clonal deletion of the self-superantigen-reactive T cells. In addition, CD4+ T cells from DR alpha-30 as well as those from DR alpha-24 were tolerant to DR alpha-derived peptide/I-Ab complex expressed on spleen cells from DR alpha-24 even in the presence of exogenous interleukin-2. These observations suggest that expression of the DR alpha chain in thymic epithelial cells could induce T cell tolerance directed toward naturally processed DR alpha-derived peptide bound to I-Ab molecules, probably via clonal deletion of the self-reactive T cells.
Collapse
Affiliation(s)
- Y Fukui
- Department of Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Whitley MZ, Cheng HL, Tomasi TB, Boothby M. Distinct IL-4 response mechanisms of the MHC gene A alpha in different mouse B cell lines. Mol Immunol 1993; 30:821-32. [PMID: 8321247 DOI: 10.1016/0161-5890(93)90005-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Interleukin-4 (IL-4) is a multipotent cytokine which stimulates proliferation of B and T lymphocytes, induces B lymphocyte expression of major histocompatibility complex (MHC) class II molecules and Fc epsilon R II (CD23) molecules, and promotes immunoglobulin class switching to IgE and IgG1. The mechanisms by which IL-4 induces these changes are unclear. To study the basis for heterogeneity in induction of class II MHC proteins observed in splenic B cells, three mouse B cell lines were treated with IL-4, and the response of MHC class II A alpha mRNA was analyzed. Each of the three cell lines responded with a distinctive profile. In one line, 70Z/3, A alpha mRNA was induced greater than 10 fold by 65 hr of IL-4 stimulation. Additional studies showed that A alpha mRNA was stabilized by IL-4 treatment of 70Z/3 cells, and that changes in gene transcription accounted for little of the increase in mRNA levels. A second line, WEHI.231, was shown to increase A alpha mRNA levels 4 fold after 48 hr of IL-4 treatment. In contrast to 70Z/3, when A alpha mRNA stability in the IL-4 treated WEHI.231 cells was compared to untreated cells, no difference was observed, IL-4 treatment induced A alpha transcription. The third cell line, M12.4.1, expressed high basal levels of A alpha, and these levels increased only slightly following IL-4 stimulation. The small increase correlated with a comparable transcriptional response. These data shown that the nature of the A alpha gene response to IL-4 differs among B cell lines. This heterogeneity of response is consistent with responses in total splenic B cells, and with the existence of functionally distinct subpopulations of B cells.
Collapse
Affiliation(s)
- M Z Whitley
- Department of Cancer Biology, Harvard School of Public Health, Boston, MA
| | | | | | | |
Collapse
|
19
|
Bland PW, Whiting CV. Differential control of major histocompatibility complex class II I-Ek alpha protein expression in the epithelium and in subsets of lamina propria antigen-presenting cells of the gut. Immunology 1993; 79:107-11. [PMID: 8509132 PMCID: PMC1422041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the gut, both the villus epithelium and cells of macrophages and dendritic cell lineages of the lamina propria and Peyer's patches express major histocompatibility complex (MHC) class II glycoproteins and have the potential to present soluble protein antigen. Using mice transgenic for the X and Y promoter deletion mutants of the gene encoding the I-Ek alpha class II protein we have shown: that an intact promoter is essential for expression of I-Ek alpha on the epithelium and lamina propria macrophages; that only the Y box is essential for expression by lamina propria dendritic cells; and that dendritic cells in Peyer's patches are phenotypically more restricted than in the lamina propria and express I-Ek alpha under different regulatory control mechanisms. The results show that different inductive mechanisms exist for class II in distinct mucosal cell populations and provide a model for the analysis of differential antigen handling in the gut mucosa.
Collapse
Affiliation(s)
- P W Bland
- Department of Veterinary Medicine, University of Bristol, Langford, U.K
| | | |
Collapse
|
20
|
Perfetto C, Zacheis M, McDaid D, Meador JW, Schwartz BD. Polymorphism in the promoter region of HLA-DRB genes. Hum Immunol 1993; 36:27-33. [PMID: 8458736 DOI: 10.1016/0198-8859(93)90005-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Polymorphism is a hallmark of the molecules encoded within the MHC of humans and other mammals. Recently, evidence of polymorphism has also been shown to exist in the transcriptional regulatory regions of HLA-DQB genes. In this article, we report that polymorphism exists also in the promoter region of HLA-DRB genes. The sequence of the regulatory region of DRB genes from five homozygous DR B-cell lines, each of a distinct DR haplotype, revealed a number of differences, some of which are in the critical class II boxes that are generally conserved in class II promoters. The major differences occurred in a comparison of DR4 to the other DR haplotypes. These data suggest the existence of another important source of HLA class II polymorphism that may play a role in susceptibility to HLA-associated autoimmune disease.
Collapse
Affiliation(s)
- C Perfetto
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
21
|
Del Pozzo G, Perfetto C, Ombra MN, Ding GZ, Guardiola J, Maffei A. DNA polymorphisms in the 5'-flanking region of the HLA-DQA1 gene. Immunogenetics 1992; 35:176-82. [PMID: 1339403 DOI: 10.1007/bf00185111] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HLA-DQA1 gene exhibits haplotype-specific restriction fragment polymorphisms due to DNA rearrangements. We found that some of these polymorphisms extend into the 5' flanking region of the gene and are distinct from other HLA-DQA1 related DNA polymorphisms so far reported. Sequencing of genomic DNA subclones derived from the 5' flanking region of HLA-DQA1 showed the presence, in a DR4 haplotype, of two repetitive elements of the Alu family, oriented in opposite directions and bracketing an approximately 3 kilobase region immediately adjacent to the promoter of the gene. When DNAs extracted from several cell lines were analyzed by genomic hybridization using single-copy probes relative to these intervening sequences, polymorphisms were observed. No structural alterations of the gene immediately outside the DNA portion delimited by the two Alu elements were observed, thus suggesting that polymorphisms of the 5' end of HLA-DQA1 may be limited to the intervening region between the two Alu repeats. The latter includes upstream regulatory elements controlling the expression of the genes. The possibility that the structure of the DNA in this region may influence the regulation of HLA-DQA1 gene expression in different haplotypes is discussed.
Collapse
Affiliation(s)
- G Del Pozzo
- International Institute of Genetics and Biophysics, Naples, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Giacomini P, Ciucci A, Nicotra MR, Nastruzzi C, Feriotto G, Appella E, Gambari R, Pozzi L, Natali PG. Tissue-specific expression of the HLA-DRA gene in transgenic mice. Immunogenetics 1991; 34:385-91. [PMID: 1721044 DOI: 10.1007/bf01787489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transgenic mice were produced containing a 33 kilobase (kb) DNA fragment encompassing the five exons and all the known regulatory regions of the class II HLA-DRA gene. The transgene displayed regulated expression [constitutive and interferon-gamma (IFN)-gamma induced] of the human products in most mouse tissues. The tissue distribution of the DRA transgene products more closely resembled that of their mouse homologues, the endogenous H-2 Ea products, than the wider distribution of DRA products in humans. This was evident in several tissues (endothelia of small vessels, especially those of glomerular capillaries, Kupffer cells, and epithelial cells lining the gastrointestinal tract), known to differentially express class II molecules in the two species. Thus, the wider human specific pattern of expression requires an exact cis/trans complementation which is incompletely reconstituted in transgenic mice, suggesting that human-specific cis-acting elements may have arisen during evolution to direct the expression of class II genes to those anatomical regions which usually lack them in the mouse. The only example of aberrant expression of the DRA gene in the present series of transgenic mice was in the dendritic and/or epithelial cells of the thymic cortex, which displayed greatly reduced DR alpha levels in spite of a normal expression of the endogenous E alpha molecules.
Collapse
Affiliation(s)
- P Giacomini
- Immunology Laboratory, Regina Elena Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Accolla RS, Auffray C, Singer DS, Guardiola J. The molecular biology of MHC genes. IMMUNOLOGY TODAY 1991; 12:97-9. [PMID: 1676269 DOI: 10.1016/0167-5699(91)90090-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antigenic peptides become associated with major histocompatibility complex (MHC) class I and class II surface antigens, are then presented to T cells and thereby elicit an antigen-specific cellular or humoral immune response. MHC molecules are genetically heterogeneous and polymorphic; their structure is therefore relevant to modulation of the immune system. The selective pressure resulting from this modulation is in turn the main driving force for the evolution of the complex genetic system. The density of MHC molecules on the cell surface is another parameter that influences immune responsiveness. The study of the evolution and regulation of MHC genes is, therefore, of great interest. These and other themes were discussed at the Third IIGB Workshop* which was recently held in Capri.
Collapse
Affiliation(s)
- R S Accolla
- Istituto di Scienze Immunologiche, Università di Verona, Italy
| | | | | | | |
Collapse
|
24
|
Peterlin BM, Andersson G, Lötscher E, Tsang S. Transcriptional regulation of HLA class-II genes. Immunol Res 1990; 9:164-77. [PMID: 2121861 DOI: 10.1007/bf02918176] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- B M Peterlin
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco
| | | | | | | |
Collapse
|
25
|
Knight JF. The rheumatic poison: a survey of some published investigations of the immunopathogenesis of Henoch-Schönlein purpura. Pediatr Nephrol 1990; 4:533-41. [PMID: 2242325 DOI: 10.1007/bf00869841] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Laboratory studies of the pathophysiology of Henoch-Schönlein purpura (HSP) have become more numerous in recent years with the recognition of the disease's links with the mucosal immune system in general and IgA nephropathy in particular. There are weak genetic associations with C4 null phenotypes and with HLA B35 and DR4. Studies of plasma proteins in HSP patients show an increased IgA concentration, activation of the alternative pathway of complement and consumption of factor XIII. High molecular weight (polymeric) IgA has been detected in affected individuals, which some investigators have called "immune complexes". Many patients synthesise an IgA rheumatoid factor in the acute phase, but other autoantibodies are largely absent. In vitro studies of lymphocytes from HSP patients have demonstrated an increased number of IgA-bearing and secreting B-cells, with altered T-cell regulation of antibody synthesis. While these observations point to immune dysregulation--primarily of IgA production--as a consistent feature of acute HSP, there is as yet insufficient information available to allow a consistent theory of pathogenesis to be formulated.
Collapse
Affiliation(s)
- J F Knight
- Department of Nephrology, Children's Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
26
|
Ombra MN, Del Pozzo G, Perfetto C, Maffei A, Guardiola J. Effect of the AIR-1 locus on the activation of an enhancerless HLA-DQA1 promoter. Immunogenetics 1990; 31:368-76. [PMID: 2370082 DOI: 10.1007/bf02115012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies on the regulation of a major histocompatibility complex (MHC) class II gene, HLA-DQA1, in Ia-positive cells (Raji, a human B-lymphoma cell line) and in isogenic Ia-negative cells (RJ2.2.5, a mutant of Raji altered at the AIR-1 locus) are reported. As previously found, AIR-1 is required in its entirety for the activity of an enhancer factor, the absence of which abolishes transcription of MHC class II genes. In this paper, we show that HLA-DQA1 gene expression can be directed by an enhancerless promoter. The fact that this promoter is inactive in the RJ2.2.5 mutant suggests that the trans-acting element determined by the AIR-1 locus is not only an enhancer factor as previously described, but also acts at the MHC class II promoter level.
Collapse
Affiliation(s)
- M N Ombra
- International Institute of Genetics and Biophysics, Napoli, Italy
| | | | | | | | | |
Collapse
|
27
|
I-E transgenic mice: a model system to dissect the regulation and function of MHC class II genes in vivo. Immunol Res 1990; 9:34-46. [PMID: 2406351 DOI: 10.1007/bf02918477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Fehling HJ, Viville S, van Ewijk W, Benoist C, Mathis D. Fine-tuning of MHC class II gene expression in defined microenvironments. Trends Genet 1989; 5:342-7. [PMID: 2692242 DOI: 10.1016/0168-9525(89)90140-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Strict control of major histocompatibility complex class II gene expression is essential for proper functioning of the immune system. Recent transgenic mouse studies have revealed an intricate fine-tuning of class II gene transcription in microenvironments such as the germinal centers and thymic cortex and medulla.
Collapse
|
29
|
Affiliation(s)
- P Kourilsky
- Unité de Biologie Moléculaire du Gène, U277 INSERM, Institut Pasteur, Paris, France
| | | |
Collapse
|