1
|
Davidson CD, Gillis NE, Carr FE. Thyroid Hormone Receptor Beta as Tumor Suppressor: Untapped Potential in Treatment and Diagnostics in Solid Tumors. Cancers (Basel) 2021; 13:4254. [PMID: 34503062 PMCID: PMC8428233 DOI: 10.3390/cancers13174254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023] Open
Abstract
There is compelling evidence that the nuclear receptor TRβ, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRβ induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRβ-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRβ is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRβ enhances sensitivity to chemotherapeutics. TRβ co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRβ as a potential biomolecular diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Cole D. Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Noelle E. Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| | - Frances E. Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (C.D.D.); (N.E.G.)
- University of Vermont Cancer Center, Burlington, VT 05401, USA
| |
Collapse
|
2
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
3
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Antonini D, Sibilio A, Dentice M, Missero C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front Endocrinol (Lausanne) 2013; 4:104. [PMID: 23986743 PMCID: PMC3749490 DOI: 10.3389/fendo.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders.
Collapse
Affiliation(s)
| | - Annarita Sibilio
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Monica Dentice
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Fondazione IRCCS SDN, Napoli, Italy
- *Correspondence: Caterina Missero, CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 486, Napoli 80145, Italy e-mail:
| |
Collapse
|
5
|
Infante C, Manchado M, Asensio E, Cañavate JP. Molecular characterization, gene expression and dependence on thyroid hormones of two type I keratin genes (sseKer1 and sseKer2) in the flatfish Senegalese sole (Solea senegalensis Kaup). BMC DEVELOPMENTAL BIOLOGY 2007; 7:118. [PMID: 17956602 PMCID: PMC2174949 DOI: 10.1186/1471-213x-7-118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 10/23/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND Keratins make up the largest subgroup of intermediate filaments, and, in chordates, represent the most abundant proteins in epithelial cells. They have been associated with a wide range of functions in the cell, but little information is still available about their expression profile and regulation during flatfish metamorphosis. Senegalese sole (Solea senegalensis) is a commercially important flatfish in which no keratin gene has been described yet. RESULTS The development of large-scale genomics of Senegalese sole has facilitated the identification of two different type I keratin genes referred to as sseKer1 and sseKer2. Main characteristics and sequence identities with other fish and mammal keratins are described. Phylogenetic analyses grouped sseKer1 and sseKer2 in a significant clade with other teleost epidermal type I keratins, and have allowed for the identification of sseKer2 as a novel keratin. The expression profile of both genes was studied during larval development and in tissues using a real-time approach. sseKer1 and sseKer2 mRNA levels were significantly higher in skin than in other tissues examined. During metamorphosis, sseKer1 transcripts increased significantly at first stages, and reduced thereafter. In contrast, sseKer2 mRNA levels did not change during early metamorphosis although a significant drop at metamorphosis climax and late metamorphosis was also detected. To study the possible regulation of sseKer gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited higher sseKer1 and sseKer2 mRNA levels than untreated control at both 11 and 15 days after treatment. Moreover, addition of exogenous T4 hormone to TU-treated larvae restored or even reduced the steady-state levels with respect to the untreated control, demonstrating that expression of both genes is negatively regulated by THs. CONCLUSION We have identified two keratin genes, referred to as sseKer1 and sseKer2, in Senegalese sole. Phylogenetic analyses revealed sseKer2 as a novel keratin. Although they exhibit different expression patterns during larval development, both of them are negatively regulated by THs. The co-regulation by THs could explain the reduction of both keratin transcripts after the metamorphosis climax, suggesting their role in the tissue remodelling processes that occur during metamorphosis.
Collapse
Affiliation(s)
- Carlos Infante
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro de pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | | | | | | |
Collapse
|
6
|
Menon J, Wahrman MZ. Ultrastructural observations on effects of different concentrations of calcium and thyroxine in vitro on larval epidermal cells of Rana catesbeiana tadpoles. In Vitro Cell Dev Biol Anim 2001; 37:283-92. [PMID: 11513083 DOI: 10.1007/bf02577544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5 mM) calcium (Ca2+) in the absence or presence of thyroxine (10(-7) M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5 mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5 mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation in Rana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.
Collapse
Affiliation(s)
- J Menon
- Department of Biology, William Paterson University of New Jersey, Wayne 07470, USA.
| | | |
Collapse
|
7
|
Warshawsky D, Miller L. Tissue-specific in vivo protein-DNA interactions at the promoter region of the Xenopus 63 kDa keratin gene during metamorphosis. Nucleic Acids Res 1995; 23:4502-9. [PMID: 7501476 PMCID: PMC307410 DOI: 10.1093/nar/23.21.4502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Xenopus 63 kDa keratin gene is developmentally regulated and is expressed only in the epidermis. Full activation of the 63 kDa keratin gene requires two regulatory steps, the first independent and the second dependent on the thyroid hormone triiodothyronine (T3). Sequence analysis of a genomic clone of the 63 kDa keratin gene identified potential AP2 and SP1 binding sites upstream of the transcription initiation site. Electrophoretic mobility shift assays using purified or enriched proteins, as well as HeLa nuclear extract in conjunction with AP2- and SP1-specific antibodies, have been used to demonstrate that human AP2 and SP1 bind elements upstream of the transcription initiation site. In vivo footprinting with ligation mediated PCR revealed several footprints, within 350 bp upstream of the transcription initiation site, including those at the AP2 and SP1 sites, that are unique to epidermal cells which express the keratin gene. These footprints were absent in blood cells and XL177 cells which do not express the gene. Comparison of footprints between cells which express the 63 kDa keratin gene at low or high levels showed that the same binding sites are occupied, indicating that these sites are required for basal as well as T3-induced expression of the 63 kDa keratin gene.
Collapse
Affiliation(s)
- D Warshawsky
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
8
|
Nishikawa A, Shimizu-Nishikawa K, Miller L. Isolation, characterization, and in vitro culture of larval and adult epidermal cells of the frog Xenopus laevis. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:1128-34. [PMID: 1706696 DOI: 10.1007/bf02623689] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methods for the isolation and in vitro culture of larval and adult Xenopus laevis epidermal cells have been developed. Epidermal cells of stage 52-54 tadpoles and adult epidermal cells were enzymatically dissociated and purified (98%) by Percoll-density centrifugation and unit-gravity sedimentation. Both cell types attached on fibronectin-coated dishes and proliferated for 1 wk when the proper medium was used. There were four significant differences between larval and adult cells: a) Adult cells had a greater buoyant density than larval cells. b) Keratin synthesis patterns were markedly different. c) A combination of medium F12 and Eagle's minimum essential medium was optimal for growth of larval cells whereas MCDB151 medium was optimal for adult cells. d) Adult cells needed fetal bovine serum (greater than 5%) whereas larval cells grew without fetal bovine serum. In contrast to these differences, larval and adult cells had two similar properties: a) Insulin had a potent effect on the growth of both cells, and b) The optimal Ca++ concentration for cell growth was quite low for both cell types; 0.1 mM for larval cells and below 0.05 mM for adult cells. These results suggest that low Ca++ levels are essential for both cornifying (adult) and uncornifying (larval) amphibian keratinocytes. The culture techniques described herein for larval and adult epidermal cells provide a new in vitro model for analyzing development of the epidermis during amphibian metamorphosis.
Collapse
Affiliation(s)
- A Nishikawa
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
9
|
Tomic M, Jiang CK, Epstein HS, Freedberg IM, Samuels HH, Blumenberg M. Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes. CELL REGULATION 1990; 1:965-73. [PMID: 1712634 PMCID: PMC362865 DOI: 10.1091/mbc.1.12.965] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the epidermis, retinoids regulate the expression of keratins, the intermediate filament proteins of epithelial cells. We have cloned the 5' regulatory regions of four human epidermal keratin genes, K#5, K#6, K#10, and K#14, and engineered constructs in which these regions drive the expression of the CAT reporter gene. By co-transfecting the constructs into epithelial cells along with the vectors expressing nuclear receptors for retinoic acid (RA) and thyroid hormone, we have demonstrated that the receptors can suppress the promoters of keratin genes. The suppression is ligand dependent; it is evident both in established cell lines and in primary cultures of epithelial cells. The three RA receptors have similar effects on keratin gene transcription. Our data indicate that the nuclear receptors for RA and thyroid hormone regulate keratin synthesis by binding to negative recognition elements in the upstream DNA sequences of the keratin genes. RA thus has a twofold effect on epidermal keratin expression: qualitatively, it regulates the regulators that effect the switch from basal cell-specific keratins to differentiation-specific ones; and quantitatively, it determines the level of keratin synthesis within the cell by direct interaction of its receptors with the keratin gene promoters.
Collapse
Affiliation(s)
- M Tomic
- Department of Dermatology, New York University Medical Center, New York 10016
| | | | | | | | | | | |
Collapse
|