1
|
Bartels SJJ, Spruijt CG, Brinkman AB, Jansen PWTC, Vermeulen M, Stunnenberg HG. A SILAC-based screen for Methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein. PLoS One 2011; 6:e25884. [PMID: 21991380 PMCID: PMC3185043 DOI: 10.1371/journal.pone.0025884] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that plays a crucial role in a variety of biological processes. Methylated DNA is specifically bound by Methyl-CpG Binding Proteins (MBPs). Three different types of MBPs have been identified so far: the Methyl-CpG Binding Domain (MBD) family proteins, three BTB/POZ-Zn-finger proteins, and UHRF1. Most of the known MBPs have been identified via homology with the MBD and Zn-finger domains as present in MeCP2 and Kaiso, respectively. It is conceivable that other proteins are capable of recognizing methylated DNA. Methodology/Principal Findings For the purpose of identifying novel ‘readers’ we set up a methyl-CpG pull-down assay combined with stable-isotope labeling by amino acids in cell culture (SILAC). In a methyl-CpG pull-down with U937 nuclear extracts, we recovered several known MBPs and almost all subunits of the MBD2/NuRD complex as methylation specific binders, providing proof-of-principle. Interestingly, RBP-J, the transcription factor downstream of Notch receptors, also bound the DNA in a methylation dependent manner. Follow-up pull-downs and electrophoretic mobility shift assays (EMSAs) showed that RBP-J binds methylated DNA in the context of a mutated RBP-J consensus motif. Conclusions/Significance The here described SILAC/methyl-CpG pull-down constitutes a new approach to identify potential novel DNAme readers and will advance unraveling of the complete methyl-DNA interactome.
Collapse
Affiliation(s)
- Stefanie J. J. Bartels
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Cornelia G. Spruijt
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arie B. Brinkman
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Pascal W. T. C. Jansen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Fan J, Zhan M, Shen J, Martindale JL, Yang X, Kawai T, Gorospe M. En masse nascent transcription analysis to elucidate regulatory transcription factors. Nucleic Acids Res 2006; 34:1492-500. [PMID: 16540593 PMCID: PMC1408309 DOI: 10.1093/nar/gkj510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Despite exhaustively informing about steady-state mRNA abundance, DNA microarrays have been used with limited success to identify regulatory transcription factors (TFs). The main limitation of this approach is that altered mRNA stability also strongly governs the patterns of expressed genes. Here, we used nuclear run-on assays and microarrays to systematically interrogate changes in nascent transcription in cells treated with the topoisomerase inhibitor camptothecin (CPT). Analysis of the promoters of coordinately transcribed genes after CPT treatment suggested the involvement of TFs c-Myb and Rfx1. The predicted CPT-dependent associations were subsequently confirmed by chromatin immunoprecipitation assays. Importantly, after RNAi-mediated knockdown of each TF, the CPT-elicited induction of c-Myb- and/or Rfx1-regulated mRNAs was diminished and the overall cellular response was impaired. The strategies described here permit the successful identification of the TFs responsible for implementing adaptive gene expression programs in response to cellular stimulation.
Collapse
Affiliation(s)
| | - Ming Zhan
- Research Resources Branch, National Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimore, MD 21224, USA
| | - Jikui Shen
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimore, MD 21287, USA
| | | | | | | | - Myriam Gorospe
- To whom correspondence should be addressed at Box 12, LCMB, NIA-IRP, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA. Tel: +1 410 558 8443; Fax: +1 410 558 8386;
| |
Collapse
|
3
|
Alcantara FF, Tang H, McLachlan A. Functional characterization of the interferon regulatory element in the enhancer 1 region of the hepatitis B virus genome. Nucleic Acids Res 2002; 30:2068-75. [PMID: 11972347 PMCID: PMC113846 DOI: 10.1093/nar/30.9.2068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An interferon-stimulated response element (ISRE)/interferon regulatory element (IRE) spanning nucleotide coordinates 1091-1100 is present in the enhancer 1/X gene promoter region of the hepatitis B virus (HBV) genome. In the context of a minimal promoter element, the enhancer 1/X gene promoter ISRE/IRE was shown to be a functional regulatory site capable of mediating interferon alpha- (IFNalpha) and interferon-stimulated gene factor 3 (ISGF3)-specific transcriptional activation in transient transfection analysis. The enhancer 1/X gene promoter ISRE/IRE was also shown to mediate interferon regulatory factor (IRF) 1 and IRF7 activation of transcription from a minimal promoter construct. In contrast, IFNalpha and the IRFs had minimal effect on HBV transcription and replication in the context of the viral genome in cell culture.
Collapse
Affiliation(s)
- Flavio F Alcantara
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
4
|
Ori A, Zauberman A, Doitsh G, Paran N, Oren M, Shaul Y. p53 binds and represses the HBV enhancer: an adjacent enhancer element can reverse the transcription effect of p53. EMBO J 1998; 17:544-53. [PMID: 9430645 PMCID: PMC1170404 DOI: 10.1093/emboj/17.2.544] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription program of the hepatitis B virus (HBV) genome is regulated by an enhancer element that binds multiple ubiquitous and liver-enriched transcription activators. HBV transcription and replication are repressed in the presence of p53. Here we describe a novel molecular mechanism that is responsible for this repression. The p53 protein binds to a defined region within the HBV enhancer in a sequence-specific manner, and this, surprisingly, results in p53-dependent transcriptional repression in the context of the whole HBV enhancer. This unusual behavior of the HBV enhancer can be reconstituted by replacing its p53-binding region with the p53-binding domain of the mdm2 promoter. Remarkably, mutation of the EP element of the enhancer reversed the effect of p53 from repression to transcriptional stimulation. Furthermore, EP-dependent modulation of p53 activity can be demonstrated in the context of the mdm2 promoter, suggesting that EP is not only required but is also sufficient to convert p53 activity from positive to negative. Our results imply that the transcriptional effect of DNA-bound p53 can be dramatically modulated by the DNA context and by adjacent DNA-protein interactions.
Collapse
Affiliation(s)
- A Ori
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
5
|
Katan Y, Agami R, Shaul Y. The transcriptional activation and repression domains of RFX1, a context-dependent regulator, can mutually neutralize their activities. Nucleic Acids Res 1997; 25:3621-8. [PMID: 9278482 PMCID: PMC146931 DOI: 10.1093/nar/25.18.3621] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
EP is a DNA element found in regulatory regions of viral and cellular genes. While being a key functional element in viral enhancers, EP has no intrinsic enhancer activity but can stimulate or silence transcription in a context-dependent manner. The EP element is bound by RFX1, which belongs to a novel, evolutionarily conserved protein family. In an attempt to decipher the mechanism by which EP regulates transcription, the intrinsic transcriptional activity of RFX1 was investigated. A functional dissection of RFX1, by analysis of deletion mutants and chimeric proteins, identified several regions with independent transcriptional activity. An activation domain containing a glutamine-rich region is found in the N-terminal half of RFX1, while a region with repressor activity overlaps the C-terminal dimerization domain. In RFX1 these activities were mutually neutralized, producing a nearly inactive transcription factor. This neutralization effect was reproduced by fusing RFX1 sequences to a heterologous DNA-binding domain. We propose that relief of self-neutralization may allow RFX1 to act as a dual-function regulator via its activation and repression domains, accounting for the context-dependent activity of EP.
Collapse
Affiliation(s)
- Y Katan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
6
|
Dikstein R, Agami R, Heffetz D, Shaul Y. p140/c-Abl that binds DNA is preferentially phosphorylated at tyrosine residues. Proc Natl Acad Sci U S A 1996; 93:2387-91. [PMID: 8637883 PMCID: PMC39806 DOI: 10.1073/pnas.93.6.2387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
EP is a DNA element found in the enhancer and promoter regions of several cellular and viral genes. Previously, we have identified the DNA binding p140/c-Abl protein that specifically recognizes this element. Here we show that phosphorylation is essential for the p140/c-Abl DNA binding activity and for the formation of DNA-protein complexes. Furthermore, by 32P labeling of cells and protein purification, we demonstrate that in vivo the EP-DNA-associated p140/c-Abl is a tyrosine phosphoprotein. By employing two different c-Abl antibodies, we demonstrate the existence of two distinct c-Abl populations in cellular extracts. p140/c-Abl is quantitatively the minor population, is heavily phosphorylated at both serine and tyrosine residues, and is active in autophosphorylation reactions.
Collapse
Affiliation(s)
- R Dikstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
7
|
Labrie C, Lee BH, Mathews MB. Transcription factors RFX1/EF-C and ATF-1 associate with the adenovirus E1A-responsive element of the human proliferating cell nuclear antigen promoter. Nucleic Acids Res 1995; 23:3732-41. [PMID: 7479004 PMCID: PMC307273 DOI: 10.1093/nar/23.18.3732] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The proliferating cell nuclear antigen (PCNA) is an adenovirus E1A-inducible factor that is intimately linked to the processes of DNA replication and cell cycle regulation. Previously, we defined a novel cis-acting element, the PCNA E1A-responsive element (PERE), that confers induction by the E1A 243R oncoprotein upon the human PCNA promoter. To better understand the regulation of PCNA expression by E1A 243R, we have identified cellular transcription factors that associate with the PERE. In electrophoretic mobility shift assays, the PERE formed three major complexes (P1, P2 and P3) with proteins in nuclear extracts from HeLa or 293 cells. Formation of complexes P2 and P3, which correlates with PCNA promoter activity in vivo, requires the activating transcription factor (ATF) binding site found within the PERE [Labrie et al. (1993) Mol. Cell. Biol., 13, 1697-1707]. Antibody interference experiments and mobility shift assays performed with in vitro-synthesized protein indicated that the transcription factor ATF-1 is a major component of these complexes. Similar assays demonstrated that the hepatitis B virus enhancer-associated protein RFX1 constitutes a major component of the P1 complex. In addition, we examined the binding of proteins to the minimal E1A-responsive promoter to identify other factors important for transcription from the PCNA promoter. Mobility shift assays revealed that a fragment encompassing the region from -87 to +62 relative to the transcription initiation site forms at least five complexes, EH1-EH5, with HeLa cell nuclear extracts. The transcription factor YY1 associates with the initiator element of the PCNA promoter. The identification of these transcription factors will allow their roles in the activation of PCNA by E1A to be evaluated.
Collapse
Affiliation(s)
- C Labrie
- Cold Spring Harbor Laboratory, NY 11724-2208, USA
| | | | | |
Collapse
|
8
|
Zhang XY, Ni YS, Saifudeen Z, Asiedu CK, Supakar PC, Ehrlich M. Increasing binding of a transcription factor immediately downstream of the cap site of a cytomegalovirus gene represses expression. Nucleic Acids Res 1995; 23:3026-33. [PMID: 7659527 PMCID: PMC307145 DOI: 10.1093/nar/23.15.3026] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A closely related family of ubiquitous DNA binding proteins, called MDBP, binds with high affinity to two 14 base pair (bp) sites within the human cytomegalovirus immediate early gene 1 (CMV IE1) enhancer and with low affinity to one site beginning 5 bp downstream of the CMV IE1 transcription start point (+5 site). Unlike several cap position downstream MDBP sites in mammalian genes, these MDBP sites do not require cytosine methylation for optimal binding. Mutation of one of the enhancer MDBP sites to prevent MDBP recognition modestly increased the function of a neighboring CREB binding site in a transient transfection assay in the context of one promoter construct. A much larger effect on reporter gene expression (a 10-fold reduction) was seen when the low affinity MDBP recognition sequence at position +5 was converted to a high affinity site in a plasmid containing the CMV IE1 promoter upstream of the reporter gene. Evidence that the increased binding of MDBP at the mutant site is largely responsible for the observed results was provided by transfection experiments with this high affinity MDBP +5 site re-mutated to a non-binding site and by in vitro transcription assay.
Collapse
Affiliation(s)
- X Y Zhang
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
9
|
Reinhold W, Emens L, Itkes A, Blake M, Ichinose I, Zajac-Kaye M. The myc intron-binding polypeptide associates with RFX1 in vivo and binds to the major histocompatibility complex class II promoter region, to the hepatitis B virus enhancer, and to regulatory regions of several distinct viral genes. Mol Cell Biol 1995; 15:3041-8. [PMID: 7760800 PMCID: PMC230535 DOI: 10.1128/mcb.15.6.3041] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrated that MIF-1, identified initially as a binding activity that associated with the intron I element of the c-myc gene, consists of two polypeptides, the myc intron-binding peptide (MIBP1) and the major histocompatibility class II promoter-binding protein, RFX1. Using a polyclonal antiserum directed against either oligonucleotide affinity-purified MIBP1 or a peptide derived from RFX1, we showed that MIBP1 and RFX1 are distinct molecules that associate in vivo and are both present in DNA-protein complexes at the c-myc (MIF-1) and major histocompatibility complex class II (RFX1) binding sites. We have also found that MIBP1 and RFX1 bind to a regulatory site (termed EP) required for enhancer activity of hepatitis B virus. In addition, we have identified MIF-1-like sequences within regulatory regions of several other viral genes and have shown that MIBP1 binds to these sites in cytomegalovirus, Epstein-Barr virus, and polyomavirus. We have also demonstrated that the MIF-1 and EP elements can function as silencers in the hepatocarcinoma HepG2 and the cervical carcinoma HeLa cell lines. These findings indicate that MIBP1 and EP/RFX1 can associate in vivo and may regulate the expression of several distinct cellular and viral genes.
Collapse
Affiliation(s)
- W Reinhold
- Laboratory of Biological Chemistry, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
10
|
Huan B, Kosovsky MJ, Siddiqui A. Retinoid X receptor alpha transactivates the hepatitis B virus enhancer 1 element by forming a heterodimeric complex with the peroxisome proliferator-activated receptor. J Virol 1995; 69:547-51. [PMID: 7983754 PMCID: PMC188608 DOI: 10.1128/jvi.69.1.547-551.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hepatitis B virus enhancer 1 contains a retinoic acid responsive element (RARE). We have previously demonstrated that retinoid X receptor alpha (RXR alpha) transactivates enhancer 1 by binding to the RARE. The present study has revealed that a heterodimeric complex composed of RXR alpha and peroxisome proliferator-activated receptor (PPAR) interacts with the hepatitis B virus RARE. Transient transfection studies, in conjunction with in vitro DNA binding data, support the hypothesis that the RXR alpha-PPAR heterodimer transactivates enhancer 1.
Collapse
Affiliation(s)
- B Huan
- Department of Microbiology, University of Colorado Medical School, Denver 80262
| | | | | |
Collapse
|
11
|
RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol 1994. [PMID: 8289803 DOI: 10.1128/mcb.14.2.1230] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RFX1 is a transactivator of human hepatitis B virus enhancer I. We show here that RFX1 belongs to a previously unidentified family of DNA-binding proteins of which we have cloned three members, RFX1, RFX2, and RFX3, from humans and mice. Members of the RFX family constitute the nuclear complexes that have been referred to previously as enhancer factor C, EP, methylation-dependent DNA-binding protein, or rpL30 alpha. RFX proteins share five strongly conserved regions which include the two domains required for DNA binding and dimerization. They have very similar DNA-binding specificities and heterodimerize both in vitro and in vivo. mRNA levels for all three genes, particularly RFX2, are elevated in testis. In other cell lines and tissues, RFX mRNA levels are variable, particularly for RFX2 and RFX3. RFX proteins share several novel features, including new DNA-binding and dimerization motifs and a peculiar dependence on methylated CpG dinucleotides at certain sites.
Collapse
|
12
|
Reith W, Ucla C, Barras E, Gaud A, Durand B, Herrero-Sanchez C, Kobr M, Mach B. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol 1994; 14:1230-44. [PMID: 8289803 PMCID: PMC358479 DOI: 10.1128/mcb.14.2.1230-1244.1994] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RFX1 is a transactivator of human hepatitis B virus enhancer I. We show here that RFX1 belongs to a previously unidentified family of DNA-binding proteins of which we have cloned three members, RFX1, RFX2, and RFX3, from humans and mice. Members of the RFX family constitute the nuclear complexes that have been referred to previously as enhancer factor C, EP, methylation-dependent DNA-binding protein, or rpL30 alpha. RFX proteins share five strongly conserved regions which include the two domains required for DNA binding and dimerization. They have very similar DNA-binding specificities and heterodimerize both in vitro and in vivo. mRNA levels for all three genes, particularly RFX2, are elevated in testis. In other cell lines and tissues, RFX mRNA levels are variable, particularly for RFX2 and RFX3. RFX proteins share several novel features, including new DNA-binding and dimerization motifs and a peculiar dependence on methylated CpG dinucleotides at certain sites.
Collapse
Affiliation(s)
- W Reith
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, Centre Médical Universitaire, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 1993. [PMID: 8413274 DOI: 10.1128/mcb.13.11.6810] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mammalian protein called RFX or NF-X binds to the X box (or X1 box) in the promoters of a number of major histocompatibility (MHC) class II genes. In this study, RFX was shown to have the same DNA-binding specificity as methylated DNA-binding protein (MDBP), and its own cDNA was found to contain a binding site for MDBP in the leader region. MDBP is a ubiquitous mammalian protein that binds to certain DNA sequences preferentially when they are CpG methylated and to other related sequences, like the X box, irrespective of DNA methylation. MDBP from HeLa and Raji cells formed DNA-protein complexes with X-box oligonucleotides that coelectrophoresed with those containing standard MDBP sites. Furthermore, MDBP and X-box oligonucleotides cross-competed for the formation of these DNA-protein complexes. DNA-protein complexes obtained with MDBP sites displayed the same partial supershifting with an antiserum directed to the N terminus of RFX seen for complexes containing an X-box oligonucleotide. Also, the in vitro-transcribed-translated product of a recombinant RFX cDNA bound specifically to MDBP ligands and displayed the DNA methylation-dependent binding of MDBP. RFX therefore contains MDBP activity and thereby also EF-C, EP, and MIF activities that are indistinguishable from MDBP and that bind to methylation-independent sites in the transcriptional enhancers of polyomavirus and hepatitis B virus and to an intron of c-myc.
Collapse
|
14
|
Zhang XY, Jabrane-Ferrat N, Asiedu CK, Samac S, Peterlin BM, Ehrlich M. The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 1993; 13:6810-8. [PMID: 8413274 PMCID: PMC364743 DOI: 10.1128/mcb.13.11.6810-6818.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A mammalian protein called RFX or NF-X binds to the X box (or X1 box) in the promoters of a number of major histocompatibility (MHC) class II genes. In this study, RFX was shown to have the same DNA-binding specificity as methylated DNA-binding protein (MDBP), and its own cDNA was found to contain a binding site for MDBP in the leader region. MDBP is a ubiquitous mammalian protein that binds to certain DNA sequences preferentially when they are CpG methylated and to other related sequences, like the X box, irrespective of DNA methylation. MDBP from HeLa and Raji cells formed DNA-protein complexes with X-box oligonucleotides that coelectrophoresed with those containing standard MDBP sites. Furthermore, MDBP and X-box oligonucleotides cross-competed for the formation of these DNA-protein complexes. DNA-protein complexes obtained with MDBP sites displayed the same partial supershifting with an antiserum directed to the N terminus of RFX seen for complexes containing an X-box oligonucleotide. Also, the in vitro-transcribed-translated product of a recombinant RFX cDNA bound specifically to MDBP ligands and displayed the DNA methylation-dependent binding of MDBP. RFX therefore contains MDBP activity and thereby also EF-C, EP, and MIF activities that are indistinguishable from MDBP and that bind to methylation-independent sites in the transcriptional enhancers of polyomavirus and hepatitis B virus and to an intron of c-myc.
Collapse
Affiliation(s)
- X Y Zhang
- Department of Biochemistry, Tulane Medical School, New Orleans, Louisiana 70112
| | | | | | | | | | | |
Collapse
|
15
|
RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol Cell Biol 1993. [PMID: 8413236 DOI: 10.1128/mcb.13.10.6375] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus gene expression is to a large extent under the control of enhancer I (EnhI). The activity of EnhI is strictly dependent on the enhancer factor C (EF-C) site, an inverted repeat that is bound by a ubiquitous nuclear protein known as EF-C. Here we report the unexpected finding that EF-C is in fact identical to RFX1, a novel transcription factor previously cloned by virtue of its affinity for the HLA class II X-box promoter element. This finding has allowed us to provide direct evidence that RFX1 (EF-C) is crucial for EnhI function in HepG2 hepatoma cells; RFX1-specific antisense oligonucleotides appear to inhibit EnhI-driven expression of the hepatitis B virus major surface antigen gene, and in transfection assays, RFX1 behaves as a potent transactivator of EnhI. Interestingly, transactivation of EnhI by RFX1 (EF-C) is not observed in cell lines that are not of liver origin, suggesting that the ubiquitous RFX1 protein cooperates with liver-specific factors.
Collapse
|
16
|
Lilienbaum A, Crescenzo-Chaigne B, Sall AA, Pillot J, Elfassi E. Binding of nuclear factors to functional domains of the duck hepatitis B virus enhancer. J Virol 1993; 67:6192-200. [PMID: 8371357 PMCID: PMC238041 DOI: 10.1128/jvi.67.10.6192-6200.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have analyzed the structures, relative organization, and activities of binding sites for nuclear factors in the duck hepatitis B virus (duck HBV) enhancer. DNase I footprinting analysis and mobility shift assays demonstrate that this enhancer of 192 bp contains at least three binding sites for transcription factors: one for hepatocyte-adipocyte C/EBP, a second for the liver-specific transactivator hepatocyte nuclear factor 1 HNF-1, and a third for a factor, called F3, which binds to a DNA sequence bearing some resemblance to that for the ubiquitous factor EF-C. Analysis of transcriptional activity reveals that oligonucleotides corresponding to the individual binding sites, inserted upstream from a heterologous promoter, display very weak enhancer activity, whereas the enhancer encompassing these three sites displays very high activity. Analysis of duck HBV enhancer mutants indicates that the deletion of any of these sites leads to a modification of transcriptional enhancer activity. The hepatocyte nuclear factor 1 binding site is crucial, since an internal deletion of 14 bp abolishes the activity. The C/EBP site can act as repressor, and the F3 site is required for full activity. Comparative analysis reveals that the nuclear factors are similar to those bound to the human HBV enhancer but that the organization of their binding sites in the duck HBV enhancer is different.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cell Nucleus
- Cells, Cultured
- DNA, Viral/isolation & purification
- DNA, Viral/metabolism
- Deoxyribonuclease I
- Enhancer Elements, Genetic
- Genome, Viral
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/metabolism
- Hepatitis B virus/genetics
- Humans
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Oligodeoxyribonucleotides/chemical synthesis
- Oligodeoxyribonucleotides/metabolism
- Promoter Regions, Genetic
- Restriction Mapping
- Thymidine Kinase/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Lilienbaum
- Unité d'Immunologie Microbienne, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Siegrist CA, Durand B, Emery P, David E, Hearing P, Mach B, Reith W. RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol Cell Biol 1993; 13:6375-84. [PMID: 8413236 PMCID: PMC364696 DOI: 10.1128/mcb.13.10.6375-6384.1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatitis B virus gene expression is to a large extent under the control of enhancer I (EnhI). The activity of EnhI is strictly dependent on the enhancer factor C (EF-C) site, an inverted repeat that is bound by a ubiquitous nuclear protein known as EF-C. Here we report the unexpected finding that EF-C is in fact identical to RFX1, a novel transcription factor previously cloned by virtue of its affinity for the HLA class II X-box promoter element. This finding has allowed us to provide direct evidence that RFX1 (EF-C) is crucial for EnhI function in HepG2 hepatoma cells; RFX1-specific antisense oligonucleotides appear to inhibit EnhI-driven expression of the hepatitis B virus major surface antigen gene, and in transfection assays, RFX1 behaves as a potent transactivator of EnhI. Interestingly, transactivation of EnhI by RFX1 (EF-C) is not observed in cell lines that are not of liver origin, suggesting that the ubiquitous RFX1 protein cooperates with liver-specific factors.
Collapse
Affiliation(s)
- C A Siegrist
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Garcia AD, Ostapchuk P, Hearing P. Functional interaction of nuclear factors EF-C, HNF-4, and RXR alpha with hepatitis B virus enhancer I. J Virol 1993; 67:3940-50. [PMID: 8389913 PMCID: PMC237761 DOI: 10.1128/jvi.67.7.3940-3950.1993] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatitis B virus (HBV) enhancer I contains cis-acting elements that are both sufficient and essential for liver-specific enhancer function. The EF-C binding site was previously shown to be a key element in enhancer I. EF-C binding activity is evident in hepatic and nonhepatic cells. Although the EF-C binding site is required for efficient HBV enhancer I function, the EF-C site does not possess intrinsic enhancer activity when assayed in the absence of flanking elements. We have defined a novel region in HBV enhancer I, termed the GB element, that is adjacent to and functions in conjunction with the EF-C binding site. The GB element and EF-C site confer interdependent liver-specific enhancer activity in the absence of flanking HBV enhancer sequences. The nucleotide sequence of the GB element is similar to sequences of the DNA binding sites for members of the steroid receptor superfamily. Among these proteins, we demonstrate that HNF-4, RXR (retinoid X receptor), and COUP-TF bind to the GB element in vitro. HNF-4 transactivates a promoter linked to a multimerized GB/EF-C domain via the GB element in vivo in a manner that is dependent on the integrity of the adjacent EF-C binding site. RXR alpha also transactivates promoter expression via the GB element in vivo in response to retinoic acid but in a largely EF-C-independent manner. Finally, we show that COUP-TF antagonizes the activity of the GB element in human liver cells.
Collapse
Affiliation(s)
- A D Garcia
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
19
|
Huan B, Siddiqui A. Retinoid X receptor RXR alpha binds to and trans-activates the hepatitis B virus enhancer. Proc Natl Acad Sci U S A 1992; 89:9059-63. [PMID: 1329088 PMCID: PMC50064 DOI: 10.1073/pnas.89.19.9059] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A retinoid X receptor (RXR) response element was located within the functionally defined hepatitis B virus (HBV) enhancer element. A short segment of the enhancer that contains this region has been shown with genetic analysis to play a key role in the regulation of enhancer function and to represent a major determinant of liver-specific activity. Both the full-length protein and the DNA-binding domain of the liver-specific receptor RXR alpha bound to the putative retinoic acid response element in the HBV enhancer. In vivo, an HBV enhancer-reporter gene construct responds to induction with retinoic acid when cotransfected with an RXR alpha expression vector. A single-base transition (G----A) in the HBV retinoic acid response element leads to a dramatic reduction both in the in vitro binding activity of RXR alpha and the in vivo activity of the HBV enhancer. Thus, retinoic acid and the RXR alpha are implicated as being significant determinants in the liver-specific regulation of HBV gene expression and the resultant disease pathogenesis.
Collapse
Affiliation(s)
- B Huan
- Department of Microbiology and Immunology, University of Colorado Medical School, Denver 80262
| | | |
Collapse
|
20
|
Lucito R, Schneider RJ. Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C. J Virol 1992; 66:983-91. [PMID: 1309924 PMCID: PMC240800 DOI: 10.1128/jvi.66.2.983-991.1992] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus X protein stimulates transcription from a variety of promoter elements, including those activated by transcription factor NF-kappa B. A diverse group of extra- and intracellular agents, including growth factors and the human immunodeficiency virus tat protein, have been shown to require a functional protein kinase C (PKC) system to achieve activation of NF-kappa B. In this study we have investigated the molecular mechanism by which X protein activates NF-kappa B. We demonstrate that in hepatocytes, X protein induces a maximal activation of NF-kappa B corresponding to the sequestered pool of factor, which is also activated by phorbol esters. To determine whether X protein requires activation of PKC to stimulate transcription by NF-kappa B, we attempted to prevent transactivation by X protein in the presence of the PKC inhibitors calphostin C and H7. We show that PKC inhibitors do not block X protein activation of NF-kappa B, whereas they largely impair activation by phorbol esters. In addition, activation of PKC is correlated with its translocation from the cytoplasm to the plasma membrane. The subcellular distribution of PKC was investigated by introducing X protein from a replication-defective adenovirus vector, followed by immunochemical detection of PKC in cell fractions. These data also indicate that X protein stimulates transcription by NF-kappa B without the activation and translocation of PKC.
Collapse
Affiliation(s)
- R Lucito
- Department of Biochemistry, New York University Medical Center, New York 10016
| | | |
Collapse
|
21
|
Affiliation(s)
- S Faisst
- Oncologie Moléculaire, Institut Pasteur de Lille, France
| | | |
Collapse
|
22
|
Abstract
The hepatitis B virus EnhI enhancer element overlaps the promoter of the X gene. By performing methylation interference experiments, four protein factor binding sites clustered in a 120-bp region were found to control the EnhI enhancer and X promoter activities. Deletion mapping experiments indicated that the two upstream protein factor binding sites constituted a basal enhancer module. This module, likely bound by a liver-specific factor and a ubiquitous factor, could activate the herpes simplex virus thymidine kinase gene promoter by 5- or 10-fold, depending on the orientation, in Huh7 cells, a liver-derived cell line, but not in other cell types tested. The two downstream protein factor binding sites interact with the upstream basal enhancer module in an orientation- and distance-dependent manner to increase the enhancer activity by another 10-fold. In addition, at least one of the two downstream protein factor binding sites is also essential for the X promoter activity.
Collapse
Affiliation(s)
- W T Guo
- Department of Microbiology, University of Southern California, Los Angeles 90033-1054
| | | | | |
Collapse
|
23
|
Crescenzo-Chaigne B, Pillot J, Lilienbaum A, Levrero M, Elfassi E. Identification of a strong enhancer element upstream from the pregenomic RNA start site of the duck hepatitis B virus genome. J Virol 1991; 65:3882-6. [PMID: 2041096 PMCID: PMC241420 DOI: 10.1128/jvi.65.7.3882-3886.1991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genome of the duck hepatitis B virus (DHBV) contains an enhancer element. This sequence, of 192 bp, is located in the 3'-terminal coding region of the DNA polymerase gene (nucleotides 2159 to 2351), upstream from the pregenomic RNA start site. This enhancer potentiates a marked increased activity from the heterologous thymidine kinase promoter in an orientation-independent manner and at a proximal, as well as a distal, location. The DHBV enhancer activates transcription in a relatively cell-type-independent manner. Sequence homologies with the nuclear factor EF-C binding site are located in the DHBV enhancer. By using the HepG2 nuclear extracts and the DHBV enhancer as probes, a complex was observed in mobility shift assays.
Collapse
|
24
|
Trujillo MA, Letovsky J, Maguire HF, Lopez-Cabrera M, Siddiqui A. Functional analysis of a liver-specific enhancer of the hepatitis B virus. Proc Natl Acad Sci U S A 1991; 88:3797-801. [PMID: 1902571 PMCID: PMC51540 DOI: 10.1073/pnas.88.9.3797] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The liver-specific enhancer I of the human hepatitis B virus contains several regions of DNA-protein interaction. Located within this element are also the domains of a promoter controlling the synthesis of the X open reading frame. Functional domains of the enhancer I and the X gene promoter were identified using DNase I protection analysis, deletion mutagenesis, and cell transfections. A unique liver-specific interaction was identified within this element whose binding site includes a direct sequence repeat, 5'-AGTAAACAGTA-3'. The factor(s) binding to this sequence motif was purified by oligonucleotide-affinity chromatography. Binding of this factor appears to play a key role in determining the overall enhancer function. Additionally, the interaction of several purified factors is presented. Cotransfection of liver cells with expression vectors encoding transcriptional factors resulted in trans-activation of the promoter/enhancer function. Based on the results of genetic analysis a model outlining the functional domains of the enhancer/promoter region is presented.
Collapse
Affiliation(s)
- M A Trujillo
- Department of Microbiology and Immunology, University of Colorado Medical School, Denver 80262
| | | | | | | | | |
Collapse
|
25
|
Zhang XY, Asiedu CK, Supakar PC, Khan R, Ehrlich KC, Ehrlich M. Binding sites in mammalian genes and viral gene regulatory regions recognized by methylated DNA-binding protein. Nucleic Acids Res 1990; 18:6253-60. [PMID: 2173824 PMCID: PMC332489 DOI: 10.1093/nar/18.21.6253] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Methylated DNA-binding protein (MDBP), a ubiquitous mammalian protein, recognizes a variety of related DNA sequences. Some of these sequences require methylation of their CpG dinucleotides for binding and others do not. We report that MDBP binds, in a DNA methylation-independent fashion, to two sites in the mouse polyomavirus enhancer, one in the enhancer of the human hepatitis B virus, and to one in the long terminal repeat of equine infectious anemia proviral DNA. We have also found a number of MDBP sites in human and rodent DNAs which bind much better to MDBP when they are methylated at CpG dinucleotides within the recognition site. These include sites at the beginning of the human genes for hypoxanthine phosphoribosyl transferase, HLA-A2, -A3, and -A25 antigens, and alpha-galactosidase A. In the case of methylation-responsive MDBP sites, changes in their methylation status during differentiation or DNA replication could help drive development by modulating transcription.
Collapse
Affiliation(s)
- X Y Zhang
- Department of Biochemistry, Tulane Medical School, New Orleans, LA 70112
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
We have studied the functional constituents of the hepatitis B virus enhancer in a number of cell lines. The sequence of this enhancer, being embedded within an open reading frame of the virus, is in part evolutionarily frozen and therefore serves as a good model to investigate the fundamental enhancer elements. The hepatitis B virus enhancer contains three functionally important DNA sequence elements, EP, E, and NF-1a, each of which is bound by a distinct protein(s). The synergistic action of these elements accounts for all of the enhancer activity in a nonliver cell line and for most, but not all, of the activity in liver-derived cell lines. Multimers of the E but not of the EP element act as an autonomous enhancer. Conversely, a single element of either the E or the NF-1a element can act only when linked to the EP element. These results suggest that EP is a crucial enhancer element that acts only in interaction with a second enhancer element with intrinsic enhancer activity. Interestingly, a highly similar enhancer structure is found in a number of distinct viruses.
Collapse
|
27
|
Dikstein R, Faktor O, Ben-Levy R, Shaul Y. Functional organization of the hepatitis B virus enhancer. Mol Cell Biol 1990; 10:3683-9. [PMID: 2355919 PMCID: PMC360812 DOI: 10.1128/mcb.10.7.3683-3689.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have studied the functional constituents of the hepatitis B virus enhancer in a number of cell lines. The sequence of this enhancer, being embedded within an open reading frame of the virus, is in part evolutionarily frozen and therefore serves as a good model to investigate the fundamental enhancer elements. The hepatitis B virus enhancer contains three functionally important DNA sequence elements, EP, E, and NF-1a, each of which is bound by a distinct protein(s). The synergistic action of these elements accounts for all of the enhancer activity in a nonliver cell line and for most, but not all, of the activity in liver-derived cell lines. Multimers of the E but not of the EP element act as an autonomous enhancer. Conversely, a single element of either the E or the NF-1a element can act only when linked to the EP element. These results suggest that EP is a crucial enhancer element that acts only in interaction with a second enhancer element with intrinsic enhancer activity. Interestingly, a highly similar enhancer structure is found in a number of distinct viruses.
Collapse
Affiliation(s)
- R Dikstein
- Department of Molecular Genetics and Virology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|