1
|
Chi SI, Dahl M, Emblem Å, Johansen SD. Giant group I intron in a mitochondrial genome is removed by RNA back-splicing. BMC Mol Biol 2019; 20:16. [PMID: 31153363 PMCID: PMC6545197 DOI: 10.1186/s12867-019-0134-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 05/23/2019] [Indexed: 01/29/2023] Open
Abstract
Background The mitochondrial genomes of mushroom corals (Corallimorpharia) are remarkable for harboring two complex group I introns; ND5-717 and COI-884. How these autocatalytic RNA elements interfere with mitochondrial RNA processing is currently not known. Here, we report experimental support for unconventional processing events of ND5-717 containing RNA. Results We obtained the complete mitochondrial genome sequences and corresponding mitochondrial transcriptomes of the two distantly related corallimorpharian species Ricordea yuma and Amplexidiscus fenestrafer. All mitochondrial genes were found to be expressed at the RNA-level. Both introns were perfectly removed by autocatalytic splicing, but COI-884 excision appeared more efficient than ND5-717. ND5-717 was organized into giant group I intron elements of 18.1 kb and 19.3 kb in A. fenestrafer and R. yuma, respectively. The intron harbored almost the entire mitochondrial genome embedded within the P8 peripheral segment. Conclusion ND5-717 was removed by group I intron splicing from a small primary transcript that contained a permutated intron–exon arrangement. The splicing pathway involved a circular exon-containing RNA intermediate, which is a hallmark of RNA back-splicing. ND5-717 represents the first reported natural group I intron that becomes excised by back-splicing from a permuted precursor RNA. Back-splicing may explain why Corallimorpharia mitochondrial genomes tolerate giant group I introns. Electronic supplementary material The online version of this article (10.1186/s12867-019-0134-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Mikael Dahl
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway. .,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
2
|
Lönnberg T. Understanding Catalysis of Phosphate‐Transfer Reactions by the Large Ribozymes. Chemistry 2011; 17:7140-53. [DOI: 10.1002/chem.201100009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20140 Turku (Finland), Fax: (+358) 2‐333‐6700
| |
Collapse
|
3
|
Pattnaik SB, Jin K, Futai K, Suga H. Engineering of the Redox Ribozyme for the Determination of Its Architecture. CHEM LETT 2010. [DOI: 10.1246/cl.2010.786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Cerrone-Szakal AL, Chadalavada DM, Golden BL, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: the cleavage site base pair plays a structural role in facilitating catalysis. RNA (NEW YORK, N.Y.) 2008; 14:1746-60. [PMID: 18658121 PMCID: PMC2525964 DOI: 10.1261/rna.1140308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme occurs in the genomic and antigenomic strands of the HDV RNA and within mammalian transcriptomes. Previous kinetic studies suggested that a wobble pair (G*U or A(+)*C) is preferred at the cleavage site; however, the reasons for this are unclear. We conducted sequence comparisons, which indicated that while G*U is the most prevalent combination at the cleavage site, G-C occurs to a significant extent in genomic HDV isolates, and G*U, G-C, and A-U pairs are present in mammalian ribozymes. We analyzed the folding of genomic HDV ribozymes by free energy minimization and found that variants with purine-pyrimidine combinations at the cleavage site are predicted to form native structures while pyrimidine-purine combinations misfold, consistent with earlier kinetic data and sequence comparisons. To test whether the cleavage site base pair contributes to catalysis, we characterized the pH and Mg(2+)-dependence of reaction kinetics of fast-folding genomic HDV ribozymes with cleavage site base pair purine-pyrimidine combinations: G*U, A-U, G-C, and A(+)*C. Rates for these native-folding ribozymes displayed highly similar pH and Mg(2+) concentration dependencies, with the exception of the A(+)*C ribozyme, which deviated at high pH. None of the four ribozymes underwent miscleavage. These observations support the A(+)*C ribozyme as being more active with a wobble pair at the cleavage site than with no base pair at all. Overall, the data support a model in which the cleavage site base pair provides a structural role in catalysis and does not need to be a wobble pair.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
5
|
Cech TR. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep 2005; 24:362-85. [PMID: 16134019 DOI: 10.1007/s10540-005-2738-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| |
Collapse
|
6
|
Baum DA, Testa SM. In vivo excision of a single targeted nucleotide from an mRNA by a trans excision-splicing ribozyme. RNA (NEW YORK, N.Y.) 2005; 11:897-905. [PMID: 15872183 PMCID: PMC1370774 DOI: 10.1261/rna.2050505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/02/2005] [Indexed: 05/02/2023]
Abstract
We have previously reported the development of a group I intron-derived ribozyme that can bind an exogenous RNA substrate and excise from that substrate an internal segment in vitro, which allows for sequence-specific modification of RNA molecules. In this report, the activity of this trans excision-splicing ribozyme in a cellular environment, specifically Escherichia coli, was investigated. The ribozyme was re-engineered to target for excision a single-base insertion in the transcript of a green fluorescent protein, and fluorescence was exploited as a reporter for trans excision-splicing. We show that the ribozyme is able to catalyze the trans excision-splicing reaction in vivo and can repair the mutant transcripts. On average, 12% correction is observed as measured by fluorescence and at least 0.6% correction as confirmed through sequence analysis. This represents the first report of a biomolecule (in this case a ribozyme) that can selectively excise a targeted nucleotide from within an mRNA transcript in vivo. This new class of biochemical tools makes possible a wide variety of new experimental strategies, perhaps including a new approach to molecular-based therapeutics.
Collapse
Affiliation(s)
- Dana A Baum
- Department of Chemistry, University of Kentucky, Lexington, 40506, USA
| | | |
Collapse
|
7
|
Abstract
In this paper, hydrogen bonding interaction and hydration in crystal structures of both DNA and RNA oligonucleotides are discussed. Their roles in the formation and stabilization of oligonucleotides have been covered. Details of the Watson-Crick base pairs G.C and A.U in DNA and RNA are illustrated. The geometry of the wobble (mismatched) G.U base pairs and the cis and almost trans conformations of the mismatched U.U base pairs in RNA is described. The difference in hydration of the Watson-Crick base pairs G.C, A.U and the wobble G.U in different sequences of codon-anticodon interaction in double helical molecules are indicative of the effect of hydration. The hydration patterns of the phosphate, the 2'-hydroxyl groups, the water bridges linking the phosphate group, N7 (purine) and N4 of Cs or O4 of Us in the major groove, the water bridges between the 2'-hydroxyl group and N3 (purine) and O2 (pyrimidine) in the minor groove are discussed.
Collapse
Affiliation(s)
- Muttaiya Sundaralingam
- Biological Macromolecular Structure Center, Department of Chemistry, and The Ohio State Biochemistry Program, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210-1002, USA.
| | | |
Collapse
|
8
|
Su LJ, Qin PZ, Michels WJ, Pyle AM. Guiding ribozyme cleavage through motif recognition: the mechanism of cleavage site selection by a group ii intron ribozyme. J Mol Biol 2001; 306:655-68. [PMID: 11243778 DOI: 10.1006/jmbi.2000.4323] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which group II introns cleave the correct phosphodiester linkage was investigated by studying the reaction of mutant substrates with a ribozyme derived from intron ai5gamma. While fidelity was found to be quite high in most cases, a single mutation on the substrate (+1C) resulted in a dramatic loss of fidelity. When this mutation was combined with a second mutation that induces a bulge in the exon binding site 1/intron binding site 1 (EBS1/IBS1) duplex, the base-pairing register of the EBS1/IBS1 duplex was shifted and the cleavage site moved to a downstream position on the substrate. Conversely, when mismatches were incorporated at the EBS1/IBS1 terminus, the duplex was effectively truncated and cleavage occurred at an upstream site. Taken together, these data demonstrate that the cleavage site of a group II intron ribozyme can be tuned at will by manipulating the thermodynamic stability and structure of the EBS1/IBS1 pairing. The results are consistent with a model in which the cleavage site is not designated through recognition of specific nucleotides (such as the 5'-terminal residue of EBS1). Instead, the ribozyme detects a structure at the junction between single and double-stranded residues on the bound substrate. This finding explains the puzzling lack of phylogenetic conservation in ribozyme and substrate sequences near group II intron target sites.
Collapse
Affiliation(s)
- L J Su
- Department of Biochemistry and Molecular Biophysics and the Howard Hughes Medical Institute, Columbia University, 630 W. 168th Street, New York, NY, 10032, USA
| | | | | | | |
Collapse
|
9
|
Roman J, Rubin MN, Woodson SA. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. RNA (NEW YORK, N.Y.) 1999; 5:1-13. [PMID: 9917062 PMCID: PMC1369735 DOI: 10.1017/s1355838299981244] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reverse splicing of group I introns is proposed to be a mechanism by which intron sequences are transferred to new genes. Integration of the Tetrahymena intron into the Escherichia coli 23S rRNA via reverse splicing depends on base pairing between the guide sequence of the intron and the target site. To investigate the substrate specificity of reverse splicing, the wild-type and 18 mutant introns with different guide sequences were expressed in E. coli. Amplification of intron-rRNA junctions by RT-PCR revealed partial reverse splicing at 69 sites and complete integration at one novel site in the 23S rRNA. Reverse splicing was not observed at some potential target sites, whereas other regions of the 23S rRNA were more reactive than expected. The results indicate that the frequency of reverse splicing is modulated by the structure of the rRNA. The intron is spliced 10-fold less efficiently in E. coli from a novel integration site (U2074) in domain V of the 23S rRNA than from a site homologous to the natural splice junction of the Tetrahymena 26S rRNA, suggesting that the forward reaction is less favored at this site.
Collapse
Affiliation(s)
- J Roman
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021, USA
| | | | | |
Collapse
|
10
|
Biswas R, Sundaralingam M. Crystal structure of r(GUGUGUA)dC with tandem G x U/U x G wobble pairs with strand slippage. J Mol Biol 1997; 270:511-9. [PMID: 9237915 DOI: 10.1006/jmbi.1997.1118] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To better understand the frequent occurrence of adjacent wobble pairs in ribosomal RNAs we have determined the crystal structure of the RNA duplex, r(GUGUGUA)dC with the 3'-terminal deoxy C residue. Two different crystal forms of the duplex were obtained and both belong to the rhombohedral space group, R3. Crystal form I has hexagonal unit cell dimensions, a = b = 40.82 A and c = 66.09 A and diffracts to 1.58 A resolution, while crystal form II has a = b = 47.11 A and c = 59.86 A, diffracting only to 2.50 A resolution. Both structures were solved by the molecular replacement method using different starting models. In spite of the large differences in the cell dimensions the overall structures in both crystals are similar. Instead of the expected blunt-end duplex with four consecutive G x U pairs, the slippage of the strands resulted in two different tandem G x U/U x G wobble pairs involving two of the central and two of the 5' overhang bases, still yielding a total of four wobble pairs. These tandem wobble pairs are flanked by two Watson-Crick pairs. The A-type duplexes stack in the familiar head-to-tail fashion forming a pseudocontinuous helix. The wobble pairs of the present motif II (G x U/U x G) structure stack with a low twist angle of 25.3 degrees in contrast to that of motif I (U x G/G x U), 38.1 degrees. The four wobble pairs are characteristically heavily hydrated in both the grooves accounting for their stability.
Collapse
Affiliation(s)
- R Biswas
- Biological Macromolecular Structure Center, Department of Chemistry, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
11
|
Abstract
Structured RNA molecules play essential roles in RNA processing, chromosome maintenance and protein biosynthesis. RNA necessarily uses different strategies than proteins for folding and assembly of complex architectures. The RNA-folding problem is largely an issue of helical packing: how does RNA organize and pack short, double-helical segments to produce active sites and recognition motifs for proteins? Noncanonical base pairs, metal ions and 2'-hydroxyl groups are key elements in RNA higher-order structure formation.
Collapse
Affiliation(s)
- S A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
12
|
Biswas R, Wahl MC, Ban C, Sundaralingam M. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs. J Mol Biol 1997; 267:1149-56. [PMID: 9150403 DOI: 10.1006/jmbi.1997.0936] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The crystal structure of the RNA duplex, r(GUAUGUA)dC, with a 3'-terminal deoxy C residue, has been determined at 1.38 A resolution. The r(GUAUGU) hexameric consensus sequence is present at the exon-intron junction in pre-mRNAs of yeast and higher eukaryotic organisms. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 39.71 A, c = 68.15 A and gamma = 120 degrees with one duplex in the asymmetric unit. The structure was solved using the molecular replacement method. The final model contains 332 atoms of the duplex and 67 solvent molecules. The R-factor is 17.6% (Rfree of 23.1%) for 4035 reflections with F > or = 1.5sigma(F) in the resolution range 10.0 to 1.38 A. The duplex is of the A-type with a pseudodyad relating the two strands. The RNA helix is slightly distorted, in spite of the presence of two adjacent G x U wobble base-pairs located at the center of the helix. The twist angle between the wobble pairs, 38.1 degrees, is above the average value and those between the wobble base-pairs and the flanking Watson-Crick base-pairs, 26.7 degrees and 26.3 degrees, respectively, are lower than the average values. The twist between the junction base-pairs are about 24 degrees. The G x U wobble pairs are bridged by water molecules and solvated in the grooves. G x U base-pairs are as stable as the Watson-Crick A x U pairs and only slightly less stable than the G x C pairs accounting for their frequent occurrence in RNA.
Collapse
Affiliation(s)
- R Biswas
- Department of Chemistry, Biological Macromolecular Structure Center, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
13
|
Perrotta AT, Been MD. Core sequences and a cleavage site wobble pair required for HDV antigenomic ribozyme self-cleavage. Nucleic Acids Res 1996; 24:1314-21. [PMID: 8614636 PMCID: PMC145785 DOI: 10.1093/nar/24.7.1314] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The secondary structures proposed for the cis-acting hepatitis delta virus (HDV) ribozymes contain four duplex regions, three sequences joining the duplexes and two hairpin loops. The core and active site of the ribozyme could be formed by portions of the joining sequences, J1/4 and J4/2, together with one of the hairpin loops, L3. To establish the core region and define essential bases within this putative active site 28 single base changes at 15 positions were made and tested for effects on ribozyme cleavage. At 14 of the 15 positions all of the changes resulted in detectable decreased rates of cleavage. At seven of the positions one or more of the changes resulted in a 500-fold or greater decrease in the observed rate constant for cleavage. Mutations that resulted in 10(3)-fold effects were found in all three regions hypothesized to form the core. At the cleavage site substitutions of the cytosine 5' of the site of cleavage did not provide strong support for a sequence-specific interaction involving this nucleotide. In contrast, an A-C combination was the most effective substitution for a potential G-U pair 3' of the cleavage site, suggesting a requirement for a wobble pair at that position.
Collapse
Affiliation(s)
- A T Perrotta
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27707, USA
| | | |
Collapse
|
14
|
Roman J, Woodson SA. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA. RNA (NEW YORK, N.Y.) 1995; 1:478-490. [PMID: 7489509 PMCID: PMC1482422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Group I introns in rRNA genes are clustered in highly conserved regions that include tRNA and mRNA binding sites. This pattern is consistent with insertion of group I introns by direct interaction with exposed regions of rRNA. Integration of the Tetrahymena group I intron (or intervening sequence, IVS) into large subunit rRNA via reverse splicing was investigated using E. coli 23S rRNA as a model substrate. The results show that sequences homologous to the splice junction in Tetrahymena are the preferred site of integration, but that many other sequences in the 23S rRNA provide secondary targets. Like the original splice junction, many new reaction sites are in regions of stable secondary structure. Reaction at the natural splice junction is observed in 50S subunits and to a lesser extent in 70S ribosomes. These results support the feasibility of intron transposition to new sites in rRNA genes via reverse splicing.
Collapse
Affiliation(s)
- J Roman
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021, USA
| | | |
Collapse
|
15
|
Strobel SA, Cech TR. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site. Science 1995; 267:675-9. [PMID: 7839142 DOI: 10.1126/science.7839142] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The guanine-uracil (G.U) base pair that helps to define the 5'-splice site of group I introns is phylogenetically highly conserved. In such a wobble base pair, G makes two hydrogen bonds with U in a geometry shifted from that of a canonical Watson-Crick pair. The contribution made by individual functional groups of the G.U pair in the context of the Tetrahymena ribozyme was examined by replacement of the G.U pair with synthetic base pairs that maintain a wobble configuration, but that systematically alter functional groups in the major and minor grooves of the duplex. The substitutions demonstrate that the exocyclic amine of G, when presented on the minor groove surface by the wobble base pair conformation, contributes substantially (2 kilocalories.mole-1) to binding by making a tertiary interaction with the ribozyme active site. It contributes additionally to transition state stabilization. The ribozyme active site also makes tertiary contacts with a tripod of 2'-hydroxyls on the minor groove surface of the splice site helix. This suggests that the ribozyme binds the duplex primarily in the minor groove. The alanyl aminoacyl transfer RNA (tRNA) synthetase recognizes the exocyclic amine of an invariant G.U pair and contacts a similar array of 2'-hydroxyls when binding the tRNA(Ala) acceptor stem, providing an unanticipated parallel between protein-RNA and RNA-RNA interactions.
Collapse
Affiliation(s)
- S A Strobel
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
16
|
Johansen S, Vogt VM. An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 1994; 76:725-34. [PMID: 8124711 DOI: 10.1016/0092-8674(94)90511-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have discovered a unique group I intron-like insertion (DiSSU) in the nuclear small subunit ribosomal RNA gene of the myxomycete Didymium iridis. By sequence, DiSSU consists of a group I ribozyme at the 5' end, an open reading frame (ORF) in the middle, and a novel element at the 3' end. Intron RNA self-splices in vitro to yield ten major processed RNAs, including a full-length circle. The group I ribozyme can efficiently cleave at an internal processing site, which separates the group I ribozyme from the ORF. Surprisingly, deletion that remove the entire group I ribozyme do not impair cleavage at the 3' splice site, implying that the 3' element itself is a catalytic RNA. Deletions that remove portions of the 3' element prevent utilization of the 5' splice site, suggesting that this element cooperates with the upstream group I ribozyme in splicing. DiSSU appears to be the first example for the cooperative interaction of distinct ribozymes in RNA splicing.
Collapse
Affiliation(s)
- S Johansen
- Department of Cell Biology, University of Tromsø, Norway
| | | |
Collapse
|
17
|
Strobel SA, Cech TR. Translocation of an RNA duplex on a ribozyme. NATURE STRUCTURAL BIOLOGY 1994; 1:13-7. [PMID: 7544680 DOI: 10.1038/nsb0194-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA cleavage by the Tetrahymena ribozyme requires recognition of the reaction-site helix by the catalytic apparatus. This binding can occur in several registers, each of which results in reaction at a different nucleotide in the helix. We now identify commensurate sets of 2'-hydroxyl interactions on both strands of the reaction-site helix that account for its translocation into alternative binding registers. These results indicate that the ribozyme has a relatively rigid substrate-binding pocket into which the helix can bind in different alignments. A similar mechanism of reaction site recognition is proposed to occur during intron circularization and ribozyme polymerase activity. Translocation of the reaction site duplex provides an example of structural heterogeneity in packing of helices during the tertiary folding of RNA.
Collapse
Affiliation(s)
- S A Strobel
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
18
|
Strobel SA, Cech TR. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 1993; 32:13593-604. [PMID: 7504953 DOI: 10.1021/bi00212a027] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The L-21 ScaI ribozyme catalyzes sequence-specific cleavage of an oligonucleotide substrate. Cleavage is preceded by base pairing of the substrate to the internal guide sequence (IGS) at the 5' end of the ribozyme to form a short RNA duplex (P1). Tertiary interactions between P1 and the catalytic core dock P1 into the active site of the ribozyme. These include interactions between the catalytic core and 2'-hydroxyls of the substrate at nucleotide positions -3u and perhaps -2c. In this study, 2'-hydroxyls of the IGS strand that contribute to P1 recognition by the ribozyme are identified. IGS 2'-hydroxyls (nucleotide positions 22-27) were individually modified to either 2'-deoxy or 2'-methoxynucleotides within full-length semisynthetic L-21 ScaI ribozymes generated using T4 DNA ligase. Thermodynamic and kinetic characterization of the resulting IGS variant ribozymes justify the following conclusions: (i) 2'-Hydroxyls at nucleotide positions G22 and G25 play a critical energetic role in docking P1 into the catalytic core, contributing 2.6 and 2.1 kcal.mol-1, respectively. (ii) The loss of binding energy is manifest primarily as an increase in the rate of dissociation. Because turnover for the wild-type ribozyme is limited by product dissociation, G22 and G25 deoxy variants display up to a 20-fold increase in the multiple-turnover rate at saturating substrate. (iii) IGS tertiary interactions are energetically coupled with the tertiary interactions made to the substrate, consistent with P1 becoming undocked from its binding site in J8/7 upon substitution of either the G22 or G25 2'-hydroxyl. (iv) The G22 deoxy variant loses energetic coupling between guanosine and substrate binding, suggesting that in this variant the P1 helix is also undocked from its binding site in J4/5, the proposed site of guanosine and substrate interaction. Therefore, in combinations with previous studies four P1 2'-hydroxyls are implicated as important for docking. The contributions of the 2'-hydroxyl tertiary interactions are not equivalent and follow the hierarchical order G22 > G25 >> -3u > -2c. Because the G22 2'-hydroxyl appears to mediate P1 docking into both J8/7 and J4/5, it may serve as the molecular linchpin for the recognition of P1 by the catalytic core.
Collapse
Affiliation(s)
- S A Strobel
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
19
|
|
20
|
Pyle AM, Murphy FL, Cech TR. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 1992; 358:123-8. [PMID: 1377367 DOI: 10.1038/358123a0] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In catalysis by group I introns, the helix (P1) containing the RNA cleavage site must be positioned next to the guanosine binding site. We have identified a conserved adenine in the catalytic core that contributes to the stability of this arrangement and propose that it accepts a hydrogen bond from a specific 2'-OH in P1. Such base-backbone tertiary interactions may be generally important to the organization of RNA tertiary structure.
Collapse
Affiliation(s)
- A M Pyle
- Howard Hughes Medical Institute, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
21
|
Herschlag D. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 1992; 31:1386-99. [PMID: 1736996 DOI: 10.1021/bi00120a015] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
J1/2 of the Tetrahymena ribozyme, a sequence of three A residues, connects the RNA-binding site to the catalytic core. Addition or deletion of bases from J1/2 improves turnover and substrate specificity in the site-specific endonuclease reaction catalyzed by this ribozyme: G2CCCUCUA5 (S) + G in-equilibrium G2CCCUCU (P) + GA5. These paradoxical enhancements are caused by decreased affinity of the ribozyme for S and P [Young, B., Herschlag, D., & Cech, T.R. (1991) Cell 67, 1007]. An additional property of these mutant ribozymes, decreased fidelity of RNA cleavage, is now analyzed. (Fidelity is the ability to cleave at the correct phosphodiester bond within a particular RNA substrate.) Introduction of deoxy residues to give "chimeric" ribo/deoxyribooligonucleotides changes the positions of incorrect cleavage. Previous work indicated that S is bound to the ribozyme by both base pairing and teritary interactions involving 2'-hydroxyl groups of S. The data herein strongly suggest that the P1 duplex, which consists of S base-paired with the 5' exon binding site of the ribozyme, can dock into tertiary interactions in different registers; different 2'-hydroxyl groups of S plug into tertiary contacts with the ribozyme in the different registers. It is concluded that the mutations decrease fidelity by increasing the probability of docking out of register relative to docking in the normal register, thereby giving cleavage at different positions along S. These data also show that the contribution of J1/2 to the teritiary interactions is indirect, not direct. Thus, a structural role of the nonconserved J1/2 is indicated: this sequence positions S to optimize tertiary binding interactions and to ensure cleavage at the phosphodiester bond corresponding to the 5' splice site. Substitution of sulfur for the nonbridging pro-RP oxygen atom at the normal cleavage site has no effect on (kcat/Km)S but decreases the fraction of cleavage at the normal site in reactions catalyzed by the -3A mutant ribozyme, which has all three A residues of J1/2 removed. Thus, the ribozyme chooses where to cleave S after rate-limiting binding of S, indicating that docking can change after binding and suggesting that the ribozyme could act processively. Indeed, it is shown that the +2A ribozyme cleaves at one position along an RNA substrate and then, before releasing that RNA product, cleaves it again.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Herschlag
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215
| |
Collapse
|
22
|
Young B, Herschlag D, Cech TR. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity. Cell 1991; 67:1007-19. [PMID: 1959129 DOI: 10.1016/0092-8674(91)90373-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The RNA substrate-binding site of the Tetrahymena ribozyme is connected to the catalytic core by the joining region J1/2. Although J1/2 is not conserved among group I introns, small insertions or deletions in this sequence have dramatic effects, enhancing the turnover number and sequence specificity of ribozyme-catalyzed RNA cleavage. Measurements of rate constants for individual steps in the reaction have revealed the basis of these improvements. Ironically, the higher turnover and specificity both result from decreased affinity for RNA, rather than better cleavage. These results provide evidence that the nonconserved J1/2 sequence positions the RNA substrate to optimize tertiary interactions and ensure cleavage at the position corresponding to the 5' splice site. The wild-type RNA is well adapted to its biological function, and its limitations in multiple turnover can be corrected by mutation.
Collapse
Affiliation(s)
- B Young
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215
| | | | | |
Collapse
|
23
|
Holbrook SR, Cheong C, Tinoco I, Kim SH. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature 1991; 353:579-81. [PMID: 1922368 DOI: 10.1038/353579a0] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.
Collapse
Affiliation(s)
- S R Holbrook
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
24
|
Woodson SA, Cech TR. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry 1991; 30:2042-50. [PMID: 1998665 DOI: 10.1021/bi00222a006] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The natural splice junction of the Tetrahymena large ribosomal RNA is flanked by hairpins that are phylogenetically conserved. The stem immediately preceding the splice junction involves nucleotides that also base pair with the internal guide sequence of the intervening sequence during splicing. Thus, precursors which contain wild-type exons can form two alternative helices. We have constructed a series of RNAs where the stem-loop in the 5' exon is more or less stable than in the wild-type precursor, and tested them in both forward and reverse self-splicing reactions. The presence of a stable hairpin in ligated exon substrates interferes with the ability of the intervening sequence to integrate at the splice junction. Similarly, the presence of the wild-type hairpin in the 5' exon reduces the rate of splicing 20-fold in short precursors. The data are consistent with a competition between unproductive formation of a hairpin in the 5' exon and productive pairing of the 5' exon with the internal guide sequence. The reduction of splicing by a hairpin that is a normal feature of rRNA structure is surprising; we propose that this attenuation is relieved in the natural splicing environment.
Collapse
Affiliation(s)
- S A Woodson
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
25
|
Michel F, Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990; 216:585-610. [PMID: 2258934 DOI: 10.1016/0022-2836(90)90386-z] [Citation(s) in RCA: 914] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alignment of the 87 available sequences of group I self-splicing introns reveals numerous instances of covariation between distant sites. Some of these covariations cannot be ascribed to historical coincidences or the known secondary structure of group I introns, and are, therefore, best explained as reflecting tertiary contacts. With the help of stereochemical modelling, we have taken advantage of these novel interactions to derive a three-dimensional model of the conserved core of group I introns. Two noteworthy features of that model are its extreme compactness and the fact that all of the most evolutionarily conserved residues happen to converge around the two helices that constitute the substrate of the core ribozyme and the site that binds the guanosine cofactor necessary for self-splicing. Specific functional implications are discussed, both with regard to the way the substrate helices are recognized by the core and possible rearrangements of the introns during the self-splicing process. Concerning potential long-range interactions, emphasis is put on the possible recognition of two consecutive purines in the minor groove of a helix by a GAAA or related terminal loop.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
26
|
Cech TR. Selbstspleißen und enzymatische Aktivität einer intervenierenden Sequenz der RNA vonTetrahymena (Nobel-Vortrag). Angew Chem Int Ed Engl 1990. [DOI: 10.1002/ange.19901020705] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Cech TR. Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep 1990; 10:239-61. [PMID: 1699616 DOI: 10.1007/bf01117241] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A living cell requires thousands of different chemical reactions to utilize energy, move, grow, respond to external stimuli and reproduce itself. While these reactions take place spontaneously, they rarely proceed at a rate fast enough for life. Enzymes, biological catalysts found in all cells, greatly accelerate the rates of these chemical reactions and impart on them extraordinary specificity. In 1926, James B. Summer crystallized the enzyme urease and found that it was a protein. Skeptics argued that the enzymatic activity might reside in a trace component of the preparation rather than in the protein (Haldane, 1930), and it took another decade for the generality of Summer's finding to be established. As more and more examples of protein enzymes were found, it began to appear that biological catalysis would be exclusively the realm of proteins. In 1981 and 1982, my research group and I found a case in which RNA, a form of genetic material, was able to cleave and rejoin its own nucleotide linkages. This self-splicing RNA provided the first example of a catalytic active site formed of ribonucleic acid. This lecture gives a personal view of the events that led to our realization of RNA self-splicing and the catalytic potential of RNA. It provides yet another illustration of the circuitous path by which scientific inquiry often proceeds. The decision to expand so many words describing the early experiments means that much of our current knowledge about the system will not be mentioned. For a more comprehensive view of the mechanism and structure of the Tetrahymena self-splicing RNA and RNA catalysis in general, the reader is directed to a number of recent reviews (Cech & Bass, 1986: Cech, 1987, 1988a, 1990; Burke, 1988; Altman, 1989). Possible medical and pharmaceutical implications of RNA catalysis have also been described recently (Cech, 1988b).
Collapse
Affiliation(s)
- T R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| |
Collapse
|
28
|
Abstract
An RNA enzyme derived from the self-splicing intervening sequence of Tetrahymena thermophila catalyses sequence-specific cleavage of an oligodeoxyribonucleotide substrate. Compared with RNA, the DNA substrate is bound very weakly and is cleaved very slowly, revealing the importance of the RNA 2'-hydroxyl group in both the binding and chemical steps. The finding that catalysis by RNA can extend to DNA substrates indicates new possibilities for the transposition of intervening sequences and for the design of DNA cleavage agents with novel sequence specificities.
Collapse
Affiliation(s)
- D Herschlag
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|