1
|
Debnath N, Yadav P, Mehta PK, Gupta P, Kumar D, Kumar A, Gautam V, Yadav AK. Designer probiotics: Opening the new horizon in diagnosis and prevention of human diseases. Biotechnol Bioeng 2024; 121:100-117. [PMID: 37881101 DOI: 10.1002/bit.28574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/19/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Probiotic microorganisms have been used for therapeutic purposes for over a century, and recent advances in biotechnology and genetic engineering have opened up new possibilities for developing therapeutic approaches using indigenous probiotic microorganisms. Diseases are often related to metabolic and immunological factors, which play a critical role in their onset. With the help of advanced genetic tools, probiotics can be modified to produce or secrete important therapeutic peptides directly into mucosal sites, increasing their effectiveness. One potential approach to enhancing human health is through the use of designer probiotics, which possess immunogenic characteristics. These genetically engineered probiotics hold promise in providing novel therapeutic options. In addition to their immunogenic properties, designer probiotics can also be equipped with sensors and genetic circuits, enabling them to detect a range of diseases with remarkable precision. Such capabilities may significantly advance disease diagnosis and management. Furthermore, designer probiotics have the potential to be used in diagnostic applications, offering a less invasive and more cost-effective alternative to conventional diagnostic techniques. This review offers an overview of the different functional aspects of the designer probiotics and their effectiveness on different diseases and also, we have emphasized their limitations and future implications. A comprehensive understanding of these functional attributes may pave the way for new avenues of prevention and the development of effective therapies for a range of diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen K Mehta
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok K Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
2
|
Peter SB, Qiao Z, Godspower HN, Ajeje SB, Xu M, Zhang X, Yang T, Rao Z. Biotechnological Innovations and Therapeutic Application of Pediococcus and Lactic Acid Bacteria: The Next-Generation Microorganism. Front Bioeng Biotechnol 2022; 9:802031. [PMID: 35237589 PMCID: PMC8883390 DOI: 10.3389/fbioe.2021.802031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria represent a worthwhile organism within the microbial consortium for the food sector, health, and biotechnological applications. They tend to offer high stability to environmental conditions, with an indicated increase in product yield, alongside their moderate antimicrobial activity. Lack of endotoxins and inclusion bodies, extracellular secretion, and surface display with other unique properties, are all winning attributes of these Gram-positive lactic acid bacteria, of which, Pediococcus is progressively becoming an attractive and promising host, as the next-generation probiotic comparable with other well-known model systems. Here, we presented the biotechnological developments in Pediococcal bacteriocin expression system, contemporary variegated models of Pediococcus and lactic acid bacteria strains as microbial cell factory, most recent applications as possible live delivery vector for use as therapeutics, as well as upsurging challenges and future perspective. With the radical introduction of artificial intelligence and neural network in Synthetic Biology, the microbial usage of lactic acid bacteria as an alternative eco-friendly strain, with safe use properties compared with the already known conventional strains is expected to see an increase in various food and biotechnological applications in years to come as it offers better hope of safety, accuracy, and higher efficiency.
Collapse
Affiliation(s)
- Sunday Bulus Peter
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hero Nmeri Godspower
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Samaila Boyi Ajeje
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Plavec TV, Berlec A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms 2020; 8:E297. [PMID: 32098042 PMCID: PMC7074969 DOI: 10.3390/microorganisms8020297] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Lactic acid bacteria (LAB) have a long history of use in the food industry. Some species are part of the normal human microbiota and have beneficial properties for human health. Their long-standing use and considerable biotechnological potential have led to the development of various systems for their engineering. Together with novel approaches such as CRISPR-Cas, the established systems for engineering now allow significant improvements to LAB strains. Nevertheless, genetically modified LAB (GM-LAB) still encounter disapproval and are under extensive regulatory requirements. This review presents data on the prospects for LAB to obtain 'generally recognized as safe' (GRAS) status. Genetic modification of LAB is discussed, together with problems that can arise from their engineering, including their dissemination into the environment and the spread of antibiotic resistance markers. Possible solutions that would allow the use of GM-LAB are described, such as biocontainment, alternative selection markers, and use of homologous DNA. The use of GM-LAB as cell factories in closed systems that prevent their environmental release is the least problematic aspect, and this is also discussed.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides. Appl Microbiol Biotechnol 2019; 103:2053-2066. [DOI: 10.1007/s00253-019-09628-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|