1
|
Rudolph MJ, Tsymbal AM, Dutta A, Davis SA, Algava B, Roberge JY, Tumer NE, Li XP. Fragment Screening to Identify Inhibitors Targeting Ribosome Binding of Shiga Toxin 2. ACS Infect Dis 2024; 10:2814-2825. [PMID: 38873918 PMCID: PMC11418910 DOI: 10.1021/acsinfecdis.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Shiga toxins are the main virulence factors of Shiga toxin producing E. coli (STEC) and S. dysenteriae. There is no effective therapy to counter the disease caused by these toxins. The A1 subunits of Shiga toxins bind the C-termini of ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. The ribosome binding site of Shiga toxin 2 has not been targeted by small molecules. We screened a fragment library against the A1 subunit of Shiga toxin 2 (Stx2A1) and identified a fragment, BTB13086, which bound at the ribosome binding site and mimicked the binding mode of the P-stalk proteins. We synthesized analogs of BTB13086 and identified a series of molecules with similar affinity and inhibitory activity. These are the first compounds that bind at the ribosome binding site of Stx2A1 and inhibit activity. These compounds hold great promise for further inhibitor development against STEC infection.
Collapse
Affiliation(s)
- Michael J. Rudolph
- New York Structural Biology Center, New York, New York 10027, United States
| | - Anastasiia M. Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Simon A. Davis
- New York Structural Biology Center, New York, New York 10027, United States
| | - Benjamin Algava
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
2
|
Sayk F, Hauswaldt S, Knobloch JK, Rupp J, Nitschke M. Do asymptomatic STEC-long-term carriers need to be isolated or decolonized? New evidence from a community case study and concepts in favor of an individualized strategy. Front Public Health 2024; 12:1364664. [PMID: 38699424 PMCID: PMC11064650 DOI: 10.3389/fpubh.2024.1364664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Asymptomatic long-term carriers of Shigatoxin producing Escherichia coli (STEC) are regarded as potential source of STEC-transmission. The prevention of outbreaks via onward spread of STEC is a public health priority. Accordingly, health authorities are imposing far-reaching restrictions on asymptomatic STEC carriers in many countries. Various STEC strains may cause severe hemorrhagic colitis complicated by life-threatening hemolytic uremic syndrome (HUS), while many endemic strains have never been associated with HUS. Even though antibiotics are generally discouraged in acute diarrheal STEC infection, decolonization with short-course azithromycin appears effective and safe in long-term shedders of various pathogenic strains. However, most endemic STEC-strains have a low pathogenicity and would most likely neither warrant antibiotic decolonization therapy nor justify social exclusion policies. A risk-adapted individualized strategy might strongly attenuate the socio-economic burden and has recently been proposed by national health authorities in some European countries. This, however, mandates clarification of strain-specific pathogenicity, of the risk of human-to-human infection as well as scientific evidence of social restrictions. Moreover, placebo-controlled prospective interventions on efficacy and safety of, e.g., azithromycin for decolonization in asymptomatic long-term STEC-carriers are reasonable. In the present community case study, we report new observations in long-term shedding of various STEC strains and review the current evidence in favor of risk-adjusted concepts.
Collapse
Affiliation(s)
- Friedhelm Sayk
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Hauswaldt
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes K. Knobloch
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martin Nitschke
- Department of Medicine I, Division of Gastroenterology and Nephrology, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
3
|
Li XP, Rudolph MJ, Chen Y, Tumer NE. Structure-Function Analysis of the A1 Subunit of Shiga Toxin 2 with Peptides That Target the P-Stalk Binding Site and Inhibit Activity. Biochemistry 2024; 63:893-905. [PMID: 38467020 PMCID: PMC11418911 DOI: 10.1021/acs.biochem.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, New York 10027, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
4
|
Zeng Y, Jiang M, Robinson S, Peng Z, Chonira V, Simeon R, Tzipori S, Zhang J, Chen Z. A Multi-Specific DARPin Potently Neutralizes Shiga Toxin 2 via Simultaneous Modulation of Both Toxin Subunits. Bioengineering (Basel) 2022; 9:511. [PMID: 36290479 PMCID: PMC9598796 DOI: 10.3390/bioengineering9100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing E. coli (STEC) is a common cause of bloody diarrhea. The pathology of STEC infection derives from two exotoxins-Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2)-that are secreted by STEC in the gut, from where they are systemically absorbed, causing severe kidney damage leading to hemolytic uremic syndrome (HUS). Currently, there is no effective treatment for HUS, and only supportive care is recommended. We report the engineering of a panel of designed ankyrin repeat proteins (DARPin) with potent neutralization activity against Stx2a, the major subtype associated with HUS. The best dimeric DARPin, SD5, created via a combination of directed evolution and rational design, neutralizes Stx2a with a half maximal effective concentration (EC50) of 0.61 nM in vitro. The two monomeric DARPin constituents of SD5 exhibit complementary functions-SHT targets the enzymatic A subunit of Stx2a and inhibits the toxin's catalytic activity, while DARPin #3 binds the B subunit, based on the cryo-EM study, and induces a novel conformational change in the B subunit that distorts its five-fold symmetry and presumably interferes with toxin attachment to target cells. SD5 was fused to an albumin-binding DARPin, and the resulting trimeric DARPin DA1-SD5 efficiently protects mice in a toxin challenge model, pointing to a high potential of this DARPin as a therapeutic for STEC infection. Finally, the unprecedented toxin conformational change induced by DARPin #3 represents a novel mode of action for neutralizing Stx2 toxicity and reveals new targets for future drug development.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Mengqiu Jiang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| | - Sally Robinson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Zeyu Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd, North Grafton, MA 01536, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 8847 Riverside Pkwy, Bryan, TX 77807, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, 300 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
5
|
Al Qabili DMA, Aboueisha AKM, Ibrahim GA, Youssef AI, El-Mahallawy HS. Virulence and antimicrobial-resistance of shiga toxin-producing E. coli (STEC) Isolated from edible shellfish and its public health significance. Arch Microbiol 2022; 204:510. [PMID: 35864384 PMCID: PMC9304054 DOI: 10.1007/s00203-022-03114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Shiga toxin-producing E. coli (STEC) are an important cause of foodborne illness in humans with infections ranging from mild non-bloody diarrhea to bloody diarrhea (BD) and hemolytic uremic syndrome (HUS). This study aimed to investigate the distribution of STEC in shellfish from coastal shores of Lake Timsah in Ismailia Governorate, Egypt and its probable hazard to seafood consumers. Samples from the external surface and tissues of shrimp (n = 45), crabs (n = 45), and oysters (n = 45) batches were examined bacteriologically for the presence of STEC and tested for their antibiotic sensitivity. Moreover, occurrence of virulence genes was determined via detection of stx1, stx2 and eaeA genes using PCR. Overall, E. coli and presumptive STEC isolates (from CHROMagar) were identified from the surface (55.6 and 5.9%) and tissues (42.2 and 8.9%) of the examined shellfish batches, respectively. Five STEC isolates had been confirmed and found belonging to O26:H11, O125:H6, O146:H21, and O159 serogroups, those were 4 isolates from tissues of the three shellfish species and one isolate from the crab surface. The STEC isolates were multi-drug resistant, showing complete resistance to; penicillins, amoxycillin/clavulanic acid, colistin, fosfomycin, ceftriaxone, ciprofloxacin, and tetracycline, however, they were sensitive to gentamycin except O159 serogroup. The current study revealed low level of contamination of shellfish from coastal shores of Lake Timsah with STEC, however, it also highlights the extreme level of antimicrobial resistance exhibited by the presumptive and confirmed STEC isolates which is very hazardous for seafood consumers in the study area.
Collapse
Affiliation(s)
- Dheyazan M Ali Al Qabili
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdel-Karim M Aboueisha
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ghada A Ibrahim
- Bacteriology Department, AHRI, Ismailia branch, Ismailia, 41511, ARC, Egypt
| | - Ahmed I Youssef
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses, and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
6
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
7
|
Abstract
![]()
The paradigm of antivirulence
therapy dictates that bacterial pathogens
are specifically disarmed but not killed by neutralizing their virulence
factors. Clearance of the invading pathogen by the immune system is
promoted. As compared to antibiotics, the pathogen-selective antivirulence
drugs hold promise to minimize collateral damage to the beneficial
microbiome. Also, selective pressure for resistance is expected to
be lower because bacterial viability is not directly affected. Antivirulence
drugs are being developed for stand-alone prophylactic and therapeutic
treatments but also for combinatorial use with antibiotics. This Review
focuses on drug modalities that target bacterial exotoxins after the
secretion or release-upon-lysis. Exotoxins have a significant and
sometimes the primary role as the disease-causing virulence factor,
and thereby they are attractive targets for drug development. We describe
the key pre-clinical and clinical trial data that have led to the
approval of currently used exotoxin-targeted drugs, namely the monoclonal
antibodies bezlotoxumab (toxin B/TcdB, Clostridioides difficile), raxibacumab (anthrax toxin, Bacillus anthracis), and obiltoxaximab (anthrax toxin, Bacillus anthracis), but also to challenges with some of the promising leads. We also
highlight the recent developments in pre-clinical research sector
to develop exotoxin-targeted drug modalities, i.e., monoclonal antibodies,
antibody fragments, antibody mimetics, receptor analogs, neutralizing
scaffolds, dominant-negative mutants, and small molecules. We describe
how these exotoxin-targeted drug modalities work with high-resolution
structural knowledge and highlight their advantages and disadvantages
as antibiotic alternatives.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arttu Laisi
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
8
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
9
|
Citrobacter rodentium(ϕStx2dact), a murine infection model for enterohemorrhagic Escherichia coli. Curr Opin Microbiol 2022; 65:183-190. [PMID: 34929548 PMCID: PMC9069446 DOI: 10.1016/j.mib.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
The formation of attaching and effacing (A/E) lesions on intestinal epithelium, combined with Shiga toxin production, are hallmarks of enterohemorrhagic Escherichia coli (EHEC) infection that can lead to lethal hemolytic uremic syndrome. Although an animal infection model that fully recapitulates human disease remains elusive, mice orally infected with Citrobacter rodentium(ϕStx2dact), a natural murine pathogen lysogenized with an EHEC-derived Shiga toxin 2-producing bacteriophage, develop intestinal A/E lesions and toxin-dependent systemic disease. This model has facilitated investigation of how: (A) phage gene expression and prophage induction contribute to disease and are potentially triggered by antibiotic treatment; (B) virulence gene expression is altered by microbiota and the colonic metabolomic milieu; and (C) innate immune signaling is affected by Stx. Thus, the model provides a unique tool for accessing diverse aspects of EHEC pathogenesis.
Collapse
|
10
|
Luz D, Gómez FD, Ferreira RL, Melo BS, Guth BEC, Quintilio W, Moro AM, Presta A, Sacerdoti F, Ibarra C, Chen G, Sidhu SS, Amaral MM, Piazza RMF. The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody. Toxins (Basel) 2021; 13:toxins13110825. [PMID: 34822608 PMCID: PMC8621789 DOI: 10.3390/toxins13110825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Fernando D. Gómez
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Raíssa L. Ferreira
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Bruna S. Melo
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Beatriz E. C. Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sāo Paulo, Sao Paulo 04023-062, Brazil;
| | - Wagner Quintilio
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Agostina Presta
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| |
Collapse
|
11
|
Koeppel MB, Glaser J, Baumgartner T, Spriewald S, Gerlach RG, von Armansperg B, Leong JM, Stecher B. Scalable Reporter Assays to Analyze the Regulation of stx2 Expression in Shiga Toxin-Producing Enteropathogens. Toxins (Basel) 2021; 13:toxins13080534. [PMID: 34437405 PMCID: PMC8402550 DOI: 10.3390/toxins13080534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
Stx2 is the major virulence factor of EHEC and is associated with an increased risk for HUS in infected patients. The conditions influencing its expression in the intestinal tract are largely unknown. For optimal management and treatment of infected patients, the identification of environmental conditions modulating Stx2 levels in the human gut is of central importance. In this study, we established a set of chromosomal stx2 reporter assays. One system is based on superfolder GFP (sfGFP) using a T7 polymerase/T7 promoter-based amplification loop. This reporter can be used to analyze stx2 expression at the single-cell level using FACSs and fluorescence microscopy. The other system is based on the cytosolic release of the Gaussia princeps luciferase (gluc). This latter reporter proves to be a highly sensitive and scalable reporter assay that can be used to quantify reporter protein in the culture supernatant. We envision that this new set of reporter tools will be highly useful to comprehensively analyze the influence of environmental and host factors, including drugs, small metabolites and the microbiota, on Stx2 release and thereby serve the identification of risk factors and new therapies in Stx-mediated pathologies.
Collapse
Affiliation(s)
- Martin B. Koeppel
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
- Correspondence: (M.B.K.); (B.S.)
| | - Jana Glaser
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Tobias Baumgartner
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Stefanie Spriewald
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany;
| | - Benedikt von Armansperg
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA;
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; (J.G.); (T.B.); (S.S.); (B.v.A.)
- German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
- Correspondence: (M.B.K.); (B.S.)
| |
Collapse
|
12
|
Imdad A, Mackoff SP, Urciuoli DM, Syed T, Tanner-Smith EE, Huang D, Gomez-Duarte OG. Interventions for preventing diarrhoea-associated haemolytic uraemic syndrome. Cochrane Database Syst Rev 2021; 7:CD012997. [PMID: 34219224 PMCID: PMC8255341 DOI: 10.1002/14651858.cd012997.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Haemolytic uraemic syndrome (HUS) is a common cause of acquired kidney failure in children and rarely in adults. The most important risk factor for development of HUS is a gastrointestinal infection by Shiga toxin-producing Escherichia coli (STEC). This review addressed the interventions aimed at secondary prevention of HUS in patients with diarrhoea who were infected with a bacteria that increase the risk of HUS. OBJECTIVES Our objective was to evaluate evidence regarding secondary preventative strategies for HUS associated with STEC infections. In doing so, we sought to assess the effectiveness and safety of interventions as well as their potential to impact the morbidity and death associated with this condition. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 12 November 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Studies were considered based on the methods, participants, and research goals. Only randomised controlled trials were considered eligible for inclusion. The participants of the studies were paediatric and adult patients with diarrhoeal illnesses due to STEC. The primary outcome of interest was incidence of HUS. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as recommended by Cochrane. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We identified four studies (536 participants) for inclusion that investigated four different interventions including antibiotics (trimethoprim-sulfamethoxazole), anti-Shiga toxin antibody-containing bovine colostrum, Shiga toxin binding agent (Synsorb Pk: a silicon dioxide-based agent), and a monoclonal antibody against Shiga toxin (urtoxazumab). The overall risk of bias was unclear for selection, performance and detection bias and low for attrition, reporting and other sources of bias. It was uncertain if trimethoprim-sulfamethoxazole reduced the incidence of HUS compared to no treatment (47 participants: RR 0.57, 95% CI 0.11-2.81, very low certainty evidence). Adverse events relative to this review, need for acute dialysis, neurological complication and death were not reported. There were no incidences of HUS in either the bovine colostrum group or the placebo group. It was uncertain if bovine colostrum caused more adverse events (27 participants: RR 0.92, 95% CI 0.42 to 2.03; very low certainty evidence). The need for acute dialysis, neurological complications or death were not reported. It is uncertain whether Synsorb Pk reduces the incidence of HUS compared to placebo (353 participants: RR 0.93, 95% CI 0.39 to 2.22; very low certainty evidence). Adverse events relevant to this review, need for acute dialysis, neurological complications or death were not reported. One study compared two doses of urtoxazumab (3.0 mg/kg and 1.0 mg/kg) to placebo. It is uncertain if either 3.0 mg/kg urtoxazumab (71 participants: RR 0.34, 95% CI 0.01 to 8.14) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.79 to 1.13) reduced the incidence of HUS compared to placebo (very low certainty evidence). Low certainty evidence showed there may be little or no difference in the number of treatment-emergent adverse events with either 3.0 mg/kg urtoxazumab (71 participants: RR 1.00, 95% CI 0.84 to 1.18) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.79 to 1.13) compared to placebo. There were 25 serious adverse events reported in 18 patients: 10 in the placebo group, and 9 and 6 serious adverse events in the 1.0 mg/kg and 3.0 mg/kg urtoxazumab groups, respectively. It is unclear how many patients experienced these adverse events in each group, and how many patients experienced more than one event. It is uncertain if either dose of urtoxazumab increased the risk of neurological complications or death (very low certainty evidence). Need for acute dialysis was not reported. AUTHORS' CONCLUSIONS The included studies assessed antibiotics, bovine milk, and Shiga toxin inhibitor (Synsorb Pk) and monoclonal antibodies (Urtoxazumab) against Shiga toxin for secondary prevention of HUS in patients with diarrhoea due to STEC. However, no firm conclusions about the efficacy of these interventions can be drawn given the small number of included studies and the small sample sizes of those included studies. Additional studies, including larger multicentre studies, are needed to assess the efficacy of interventions to prevent development of HUS in patients with diarrhoea due to STEC infection.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuel P Mackoff
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - David M Urciuoli
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Dongmei Huang
- Department of Pediatrics, Division of Pediatric Nephrology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Pavez-Muñoz E, González C, Fernández-Sanhueza B, Sánchez F, Escobar B, Ramos R, Fuenzalida V, Galarce N, Arriagada G, Neira V, Muñoz-Aguayo J, Flores-Figueroa C, Johnson TJ, Alegría-Morán R. Antimicrobial Usage Factors and Resistance Profiles of Shiga Toxin-Producing Escherichia coli in Backyard Production Systems From Central Chile. Front Vet Sci 2021; 7:595149. [PMID: 33521079 PMCID: PMC7844202 DOI: 10.3389/fvets.2020.595149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen and important cause of foodborne disease worldwide. Many animal species in backyard production systems (BPS) harbor STEC, systems characterized by low biosecurity and technification. No information is reported on STEC circulation, antimicrobial resistance (AMR) and potential drivers of antimicrobial usage in Chilean BPS, increasing the risk of maintenance and transmission of zoonotic pathogens and AMR generation. Thus, the aim of this study was to characterize phenotypic and genotypic AMR and to study the epidemiology of STEC isolated in BPS from Metropolitana region, Chile. A total of 85 BPS were sampled. Minimal inhibitory concentration and whole genome sequencing was assessed in 10 STEC strain isolated from BPS. All strains were cephalexin-resistant (100%, n = 10), and five strains were resistant to chloramphenicol (50%). The most frequent serotype was O113:H21 (40%), followed by O76:H19 (40%), O91:H14 (10%), and O130:H11 (10%). The stx1 type was detected in all isolated strains, while stx2 was only detected in two strains. The Stx subtype most frequently detected was stx1c (80%), followed by stx1a (20%), stx2b (10%), and stx2d (10%). All strains harbored chromosomal blaAmpC. Principal component analysis shows that BPS size, number of cattle, pet and horse, and elevation act as driver of antimicrobial usage. Logistic multivariable regression shows that recognition of diseases in animals (p = 0.038; OR = 9.382; 95% CI: 1.138–77.345), neighboring poultry and/or swine BPS (p = 0.006; OR = 10.564; 95% CI: 1.996–55.894), visit of Veterinary Officials (p = 0.010; OR = 76.178; 95% CI: 2.860–2029.315) and close contact between animal species in the BPS (p = 0.021; OR = 9.030; 95% CI: 1.385–58.888) increase significantly the risk of antimicrobial use in BPS. This is the first evidence of STEC strains circulating in BPS in Chile, exhibiting phenotypic AMR, representing a threat for animal and public health. Additionally, we identified factors acting as drivers for antimicrobial usage in BPS, highlighting the importance of integration of these populations into surveillance and education programs to tackle the potential development of antimicrobial resistance and therefore the risk for ecosystemic health.
Collapse
Affiliation(s)
- Erika Pavez-Muñoz
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camilo González
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Bastián Fernández-Sanhueza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Romina Ramos
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Verónica Fuenzalida
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Gabriel Arriagada
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales-ICA3, Universidad de O'Higgins, Rancagua, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Jeannette Muñoz-Aguayo
- Mid-Central Research and Outreach Center, University of Minnesota, Saint Paul, MN, United States
| | - Cristian Flores-Figueroa
- Mid-Central Research and Outreach Center, University of Minnesota, Saint Paul, MN, United States
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago, Chile
| |
Collapse
|
15
|
Morabito S, Minelli F, Tozzoli R. Integrated Approach for the Diagnosis of Shiga Toxin-Producing Escherichia coli Infections in Humans. Methods Mol Biol 2021; 2291:1-17. [PMID: 33704747 DOI: 10.1007/978-1-0716-1339-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are human pathogens causing severe diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The prompt diagnosis of STEC infection is of primary importance to drive the most appropriate patient's management procedures. The methods to diagnose STEC infections include both direct isolation of the STEC from stool samples and the identification of indirect evidences based on molecular, phenotypic, and serological applications. Here, the procedures in use at the Italian Reference Laboratory for E. coli infections are described.
Collapse
|
16
|
Piedrafita A, Ribes D, Cointault O, Chauveau D, Faguer S, Huart A. Plasma exchange and thrombotic microangiopathies: From pathophysiology to clinical practice. Transfus Apher Sci 2020; 59:102990. [PMID: 33272850 DOI: 10.1016/j.transci.2020.102990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thrombotic microangiopathy (TMA) brings together many diseases that have a commonality in the apparition of mechanical hemolysis with consuming thrombopenia. In all cases, these diseases can be life threatening, thereby justifying the implementation of treatment as an emergency. First-line treatment represents plasma exchange. This treatment has proven efficiency in improving the vital patient's and functional prognosis. However, the administration methods of plasma exchange can be redefined in light of the understanding of the pathophysiology of TMA. The aim of this review is to try to define, from pathophysiology, the place of plasma exchanges in the modern therapeutic arsenal of TMA.
Collapse
Affiliation(s)
- Alexis Piedrafita
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - David Ribes
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Olivier Cointault
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Dominique Chauveau
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Stanislas Faguer
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; Institut National de la Santé et de la Recherche Médicale, UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Antoine Huart
- Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
17
|
Shiga E, Guth B, Piazza R, Luz D. Comparative analysis of rapid agglutination latex test using single-chain antibody fragments (scFv) versus the gold standard Vero cell assay for Shiga toxin (Stx) detection. J Microbiol Methods 2020; 175:105965. [DOI: 10.1016/j.mimet.2020.105965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023]
|
18
|
Abdelkafi H, Michau A, Pons V, Ngadjeua F, Clerget A, Ait Ouarab L, Buisson DA, Montoir D, Caramelle L, Gillet D, Barbier J, Cintrat JC. Structure-Activity Relationship Studies of Retro-1 Analogues against Shiga Toxin. J Med Chem 2020; 63:8114-8133. [PMID: 32648758 DOI: 10.1021/acs.jmedchem.0c00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-throughput screening has shown that Retro-1 inhibits ricin and Shiga toxins by diminishing their intracellular trafficking via the retrograde route, from early endosomes to the Golgi apparatus. To improve the activity of Retro-1, a structure-activity relationship (SAR) study was undertaken and yielded an analogue with a roughly 70-fold better half-maximal effective concentration (EC50) against Shiga toxin cytotoxicity measured in a cell protein synthesis assay.
Collapse
Affiliation(s)
- Hajer Abdelkafi
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Aurélien Michau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Valérie Pons
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Flora Ngadjeua
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Alexandra Clerget
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Lilia Ait Ouarab
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - David-Alexandre Buisson
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - David Montoir
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Lucie Caramelle
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Daniel Gillet
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Global distribution of epidemic-related Shiga toxin 2 encoding phages among enteroaggregative Escherichia coli. Sci Rep 2020; 10:11738. [PMID: 32678145 PMCID: PMC7366661 DOI: 10.1038/s41598-020-68462-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
Since the Shiga toxin-producing enteroaggregative Escherichia coli (Stx-EAEC) O104:H4 strain caused a massive outbreak across Europe in 2011, the importance of Stx-EAEC has attracted attention from a public health perspective. Two Stx-EAEC O86 isolates were obtained from patients with severe symptoms in Japan in 1999 and 2015. To characterize the phylogeny and pathogenic potential of these Stx-EAEC O86 isolates, whole-genome sequence analyses were performed by short-and long-read sequencing. Among genetically diverse E. coli O86, the Stx-EAEC O86 isolates were clustered with the EAEC O86:H27 ST3570 subgroup. Strikingly, there were only two loci with single nucleotide polymorphisms (SNPs) between the Stx2a phage of a Japanese O86:H27 isolate and that of the European epidemic-related Stx-EAEC O104:H4 isolate. These results provide evidence of global distribution of epidemic-related Stx2a phages among various lineages of E. coli with few mutations.
Collapse
|
20
|
Puño-Sarmiento J, Anderson EM, Park AJ, Khursigara CM, Barnett Foster DE. Potentiation of Antibiotics by a Novel Antimicrobial Peptide against Shiga Toxin Producing E. coli O157:H7. Sci Rep 2020; 10:10029. [PMID: 32572054 PMCID: PMC7308376 DOI: 10.1038/s41598-020-66571-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) results in hemorrhagic colitis and can lead to life-threatening sequelae including hemolytic uremic syndrome (HUS). Conventional treatment is intravenous fluid volume expansion. Antibiotic treatment is contraindicated, due in part to the elevated risk of HUS related to increased Shiga toxin (Stx) release associated with some antibiotics. Given the lack of effective strategies and the increasing number of STEC outbreaks, new treatment approaches are critically needed. In this study, we used an antimicrobial peptide wrwycr, previously shown to enhance STEC killing without increasing Stx production, in combination with antibiotic treatments. Checkerboard and time-kill assays were used to assess peptide wrwycr-antibiotic combinations for synergistic STEC killing. Cytotoxicity and real-time PCR were used to evaluate Stx production and stx expression, respectively, associated with these combinations. The synergistic combinations that showed rapid killing, no growth recovery and minimal Stx production were peptide wrwycr-kanamycin/gentamicin. Transmission electron microscopy revealed striking differences in bacterial cell morphology associated with various treatments. This study provides proof of principle for the design of an antibiotic-peptide wrwycr combination effective in killing STEC without enhancing release of Shiga toxins. It also offers a strategy for the repurposing of antibiotics for treatment of STEC infection.
Collapse
Affiliation(s)
- Juan Puño-Sarmiento
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Department of Microbiology, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Erin M Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
- Molecular and Cellular Imaging Facility, University of Guelph, Guelph, Ontario, Canada
| | - Debora E Barnett Foster
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.
- Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
22
|
de Sousa Melo B, Fernandes BHV, Lopes-Ferreira MVA, Henrique C, Piazza RMF, Luz D. Zebrafish embryo sensitivity test as in vivo platform to anti-Shiga toxin compound screening. Braz J Microbiol 2020; 51:1021-1027. [PMID: 32449119 DOI: 10.1007/s42770-020-00305-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) pathotype secretes two types of AB5 cytotoxins (Stx1 and Stx2), responsible for complications such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in infected patients, which could lead to sequels and death. Currently, there is no effective treatment against the cytotoxic effect of these toxins. However, in order to approve any therapy molecule, an animal experiment is required in order to evaluate the efficacy and safety of therapeutic approaches. The use of alternative small host models is growing among human infectious disease studies, particularly the vertebrate zebrafish model, since relevant results have been described for pathogen-host interaction. In this sense, the present work aimed to analyze the toxic effect of Shiga toxins in zebrafish embryo model in order to standardize this method in the future to be used as a fast, simple, and efficient methodology for the screening of therapeutic molecules. Herein, we demonstrated that the embryos were sensitive in a dose-dependent manner to both Stx toxins, with LD50 of 22 μg/mL for Stx1 and 33 μg/mL for Stx2, and the use of anti-Stx polyclonal antibody abolished the toxic effect. Therefore, this methodology can be a rapid alternative method for selecting promising compounds against Stx toxins, such as recombinant antibodies.
Collapse
Affiliation(s)
| | - Bianca Helena Ventura Fernandes
- Laboratório de Controle Genético e Sanitário Animal, Unidade Zebrafish, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil. .,Laboratório de Monoclonais, Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Rua Talim, 330, São José dos Campos, SP, 12231-280, Brazil.
| |
Collapse
|
23
|
Ahad II, Hossain MM, Uddin MA, Bari ML, Hossain MS. Therapeutic Effect of Antibiotics Against Escherichia coli O157:H7 in Silk Moth Larvae Animal Model. Curr Microbiol 2020; 77:2172-2180. [PMID: 32417963 DOI: 10.1007/s00284-020-02023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
The increasing clinical incidence of antibiotic resistance in bacteria is a major global health care issue. Rampant use of antimicrobials is one of the major reasons of the dramatic rise in antibiotic-resistant bacterial strains. Suitable animal models are required to improve our understanding of bacterial pathogenicity, evolution and search for novel antibiotics. The larvae of the silk moth (commonly called silkworm), Bombyx mori, have been used as an animal model for testing the pathogenicity of a clinically isolated strain of enterohemorrhagic Escherichia coli O157:H7 upon injection through hemolymph. Here, we show that a foodborne E. coli O157:H7 strain can kill silkworm larvae upon injection through either hemolymph (blood) or midgut. Bacterial number in the hemolymph started to increase after 3 h of injection into hemolymph, while the number of viable circulating hemocytes decreased. Administration of four well-known antibiotics into the larval hemolymph up to 100 µg per larva showed therapeutic effect with varying efficacies against E. coli O157:H7 with ceftriaxone and imipenem showing better effect. Our findings indicate that silkworm larvae can be used as an animal model to screen for novel antibiotics that are effective against E. coli O157:H7.
Collapse
Affiliation(s)
- Inteshar Ibn Ahad
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Mahtab Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - M Aftab Uddin
- Bangladesh Sericulture Research and Training Institute, Rajshahi, Bangladesh
| | - M Latiful Bari
- Center for Advanced Research in Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Muktadir S Hossain
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| |
Collapse
|
24
|
Detzner J, Gloerfeld C, Pohlentz G, Legros N, Humpf HU, Mellmann A, Karch H, Müthing J. Structural Insights into Escherichia coli Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles. Microorganisms 2019; 7:microorganisms7110582. [PMID: 31752441 PMCID: PMC6920957 DOI: 10.3390/microorganisms7110582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
Collapse
Affiliation(s)
- Johanna Detzner
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Caroline Gloerfeld
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Nadine Legros
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, 48149 Münster, Germany;
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, 48149 Münster, Germany; (J.D.); (C.G.); (G.P.); (N.L.); (A.M.); (H.K.)
- Correspondence: ; Tel.: +49-(0)251-8355192
| |
Collapse
|
25
|
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell. Infect Immun 2019; 87:IAI.00428-19. [PMID: 31527121 DOI: 10.1128/iai.00428-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
There are two major antigenic forms of Shiga toxin (Stx), Stx1 and Stx2, which bind the same receptor and act on the same target but nonetheless differ in potency. Stx1a is more toxic to cultured cells, but Stx2 subtypes are more potent in animal models. To understand this phenomenon in cultured cells, we used a system that combines flow cytometry with a fluorescent reporter to monitor the Stx-induced inhibition of protein synthesis in single cells. We observed that Vero cells intoxicated with Stx1a behave differently than those intoxicated with Stx2 subtypes: cells challenged with Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Cells challenged with a hybrid toxin containing the catalytic subunit of Stx1a and the cell-binding subunit of Stx2a also exhibited a bimodal response to intoxication, while cells challenged with a hybrid toxin containing the catalytic subunit of Stx2a and the cell-binding subunit of Stx1a exhibited a population-wide loss of protein synthesis. Other experiments further supported a primary role for the subtype of the B subunit in the outcome of host-Stx interactions. Our collective observations indicate that the bimodal response to Stx2 subtypes is due to relatively weak binding between Stx2 and the host cell that reduces the total functional pool of Stx2 in comparison to that of Stx1a. This explains, in part, the molecular basis for the differential cellular toxicity between Stx1a and Stx2 subtypes.
Collapse
|
26
|
Arancia S, Iurescia M, Lorenzetti S, Stravino F, Buccella C, Caprioli A, Franco A, Battisti A, Morabito S, Tozzoli R. Detection and isolation of Shiga Toxin-producing Escherichia coli (STEC) strains in caecal samples from pigs at slaughter in Italy. Vet Med Sci 2019; 5:462-469. [PMID: 31124305 PMCID: PMC6682805 DOI: 10.1002/vms3.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens of public health concern. Despite ruminants are the most important reservoir, STEC human infections have also been attributed to pigs. We examined for the presence of STEC in 234 samples of swine caecal content collected during the year 2015 at Italian abattoirs in the framework of the harmonized monitoring of antimicrobial resistance (Decision 2013/652/EU). The presence of stx genes was detected in 122 (52.1%) samples, which were subsequently subjected to STEC isolation and characterization. The analysis of the 66 isolated STEC strains showed that the majority of the isolates (74.2%) possessed the stx2a gene subtype, in a few cases (16.7%) in combination with stx2b or stx2c. Only 25.8% of isolates possessed the stx2e subtype, typical of swine-adapted STEC. None of the isolates possessed the intimin-coding eae gene and the majority of them did not belong to serogroups commonly associated with human infections. The results of this study suggest that pigs can be considered as potential reservoir of certain STEC types.
Collapse
Affiliation(s)
- Silvia Arancia
- Laboratorio Nazionale di Riferimento per E. coliIstituto Superiore di SanitàRomeItaly
| | - Manuela Iurescia
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Serena Lorenzetti
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Fiorentino Stravino
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Carmela Buccella
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Andrea Caprioli
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Alessia Franco
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Antonio Battisti
- Centro di Referenza Nazionale per l'Antibiotico‐ResistenzaIstituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”. Direzione Operativa Diagnostica GeneraleRomeItaly
| | - Stefano Morabito
- Laboratorio Nazionale di Riferimento per E. coliIstituto Superiore di SanitàRomeItaly
| | - Rosangela Tozzoli
- Laboratorio Nazionale di Riferimento per E. coliIstituto Superiore di SanitàRomeItaly
| |
Collapse
|
27
|
Pohlentz G, Steil D, Rubin D, Mellmann A, Karch H, Müthing J. Pectin-derived neoglycolipids: Tools for differentiation of Shiga toxin subtypes and inhibitors of Shiga toxin-mediated cellular injury. Carbohydr Polym 2019; 212:323-333. [DOI: 10.1016/j.carbpol.2019.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/14/2023]
|
28
|
Abstract
Hemolytic uremic syndrome (HUS) is the clinical triad of thrombocytopenia, anemia, and acute kidney injury. Classically associated with enterocolitis from Shiga toxin-producing Escherichia coli, HUS is also associated with Streptococcus pneumoniae infections; genetic dysregulation of the alternative complement pathway or coagulation cascade; and, rarely, a hereditary disorder of cobalamin C metabolism. These share a common final pathway of a prothrombotic and proinflammatory state on the endothelial cell surface, with fibrin and platelet deposition. Much work has been done to distinguish between the different mechanisms of disease, thereby informing the optimal therapeutic interventions for each entity.
Collapse
Affiliation(s)
- Ellen M Cody
- Department of Pediatrics, University of Colorado School of Medicine, 13123 East 16th Avenue, Box 158, Aurora, CO 80045, USA
| | - Bradley P Dixon
- Departments of Pediatrics & Medicine, University of Colorado School of Medicine, 12631 E. 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Balasubramanian S, Osburne MS, BrinJones H, Tai AK, Leong JM. Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog 2019; 15:e1007494. [PMID: 30629725 PMCID: PMC6328086 DOI: 10.1371/journal.ppat.1007494] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/01/2018] [Indexed: 12/12/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) colonize intestinal epithelium by generating characteristic attaching and effacing (AE) lesions. They are lysogenized by prophage that encode Shiga toxin 2 (Stx2), which is responsible for severe clinical manifestations. As a lysogen, prophage genes leading to lytic growth and stx2 expression are repressed, whereas induction of the bacterial SOS response in response to DNA damage leads to lytic phage growth and Stx2 production both in vitro and in germ-free or streptomycin-treated mice. Some commensal bacteria diminish prophage induction and concomitant Stx2 production in vitro, whereas it has been proposed that phage-susceptible commensals may amplify Stx2 production by facilitating successive cycles of infection in vivo. We tested the role of phage induction in both Stx production and lethal disease in microbiome-replete mice, using our mouse model encompassing the murine pathogen Citrobacter rodentium lysogenized with the Stx2-encoding phage Φstx2dact. This strain generates EHEC-like AE lesions on the murine intestine and causes lethal Stx-mediated disease. We found that lethal mouse infection did not require that Φstx2dact infect or lysogenize commensal bacteria. In addition, we detected circularized phage genomes, potentially in the early stage of replication, in feces of infected mice, confirming that prophage induction occurs during infection of microbiota-replete mice. Further, C. rodentium (Φstx2dact) mutants that do not respond to DNA damage or express stx produced neither high levels of Stx2 in vitro or lethal infection in vivo, confirming that SOS induction and concomitant expression of phage-encoded stx genes are required for disease. In contrast, C. rodentium (Φstx2dact) mutants incapable of prophage genome excision or of packaging phage genomes retained the ability to produce Stx in vitro, as well as to cause lethal disease in mice. Thus, in a microbiome-replete EHEC infection model, lytic induction of Stx-encoding prophage is essential for lethal disease, but actual phage production is not.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Marcia S. Osburne
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Haley BrinJones
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| | - Albert K. Tai
- Department of Immunology at Tufts University School of Medicine, Boston, MA, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology at Tufts University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
30
|
Luz D, Amaral MM, Sacerdoti F, Bernal AM, Quintilio W, Moro AM, Palermo MS, Ibarra C, Piazza RMF. Human Recombinant Fab Fragment Neutralizes Shiga Toxin Type 2 Cytotoxic Effects in vitro and in vivo. Toxins (Basel) 2018; 10:E508. [PMID: 30513821 PMCID: PMC6315604 DOI: 10.3390/toxins10120508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503900, Brasil.
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Ana Maria Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | | |
Collapse
|
31
|
Mir RA, Kudva IT. Antibiotic‐resistant Shiga toxin‐producing
Escherichia coli
: An overview of prevalence and intervention strategies. Zoonoses Public Health 2018; 66:1-13. [DOI: 10.1111/zph.12533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Raies A. Mir
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
- Oak Ridge Institute for Science and Education (ORISE) ARS Research Participation Program Oak Ridge Tennessee
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
| |
Collapse
|
32
|
Fingermann M, Avila L, De Marco MB, Vázquez L, Di Biase DN, Müller AV, Lescano M, Dokmetjian JC, Fernández Castillo S, Pérez Quiñoy JL. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Hum Vaccin Immunother 2018; 14:2208-2213. [PMID: 29923791 PMCID: PMC6183318 DOI: 10.1080/21645515.2018.1490381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome (HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.
Collapse
Affiliation(s)
| | - Lucía Avila
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | - Luciana Vázquez
- b UOCCB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | - Mirta Lescano
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
33
|
Fakhouri F, Loirat C. Anticomplement Treatment in Atypical and Typical Hemolytic Uremic Syndrome. Semin Hematol 2018; 55:150-158. [DOI: 10.1053/j.seminhematol.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
|
34
|
Imdad A, Syed T, Gomez-Duarte OG, Tanner-Smith EE, Huang D. Interventions for preventing diarrhoea-associated haemolytic uraemic syndrome. Hippokratia 2018. [DOI: 10.1002/14651858.cd012997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aamer Imdad
- SUNY Upstate Medical University; Department of Pediatrics, Karjoo Family Center for Pediatric Gastroenterology; 725, Irving Street, Suit 501 Syracuse NY USA 13210
| | - Tamkeenat Syed
- Meharry Medical College; 1005 Dr D.B. Todd Jr Blvd Nashville Tennessee USA 37208
| | - Oscar G. Gomez-Duarte
- University at Buffalo, State University of New York; Division of Pediatric Infectious Diseases, Department of Pediatrics; 875 Ellicott Street Room 6092 Buffalo NY USA 14203
| | - Emily E Tanner-Smith
- University of Oregon; Counseling Psychology and Human Services; 5251 University of Oregon Eugene Oregon USA 97403
| | - Dongmei Huang
- SUNY Upstate Medical University; Department of Pediatrics; 805, 725 Irving Avenue Syracuse NY USA 13210
| |
Collapse
|
35
|
Bernedo-Navarro RA, Romão E, Yano T, Pinto J, De Greve H, Sterckx YGJ, Muyldermans S. Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins (Basel) 2018; 10:toxins10030108. [PMID: 29494518 PMCID: PMC5869396 DOI: 10.3390/toxins10030108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb113₂ exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb113₂ with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.
Collapse
Affiliation(s)
- Robert Alvin Bernedo-Navarro
- Laboratory of Bacterial Genetics, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil.
| | - Ema Romão
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Tomomasa Yano
- Laboratory of Bacterial Genetics, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil.
| | - Joar Pinto
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Henri De Greve
- Structural Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Yann G-J Sterckx
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
36
|
Hämolytisch-urämisches Syndrom im Kindes- und Jugendalter. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
38
|
Fakhouri F, Zuber J, Frémeaux-Bacchi V, Loirat C. Haemolytic uraemic syndrome. Lancet 2017; 390:681-696. [PMID: 28242109 DOI: 10.1016/s0140-6736(17)30062-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Haemolytic uraemic syndrome is a form of thrombotic microangiopathy affecting predominantly the kidney and characterised by a triad of thrombocytopenia, mechanical haemolytic anaemia, and acute kidney injury. The term encompasses several disorders: shiga toxin-induced and pneumococcus-induced haemolytic uraemic syndrome, haemolytic uraemic syndrome associated with complement dysregulation or mutation of diacylglycerol kinase ɛ, haemolytic uraemic syndrome related to cobalamin C defect, and haemolytic uraemic syndrome secondary to a heterogeneous group of causes (infections, drugs, cancer, and systemic diseases). In the past two decades, experimental, genetic, and clinical studies have helped to decipher the pathophysiology of these various forms of haemolytic uraemic syndrome and undoubtedly improved diagnostic approaches. Moreover, a specific mechanism-based treatment has been made available for patients affected by atypical haemolytic uraemic syndrome due to complement dysregulation. Such treatment is, however, still absent for several other disease types, including shiga toxin-induced haemolytic uraemic syndrome.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, and INSERM UMR S1064, Nantes, France
| | - Julien Zuber
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology and Renal Transplantation, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Department of Biological Immunology, Hôpital Européen Georges Pompidou, and INSERM UMR S1138, Complément et Maladies, Centre de Recherche des Cordeliers, Paris, France
| | - Chantal Loirat
- Assistance Publique-Hôpitaux de Paris, Department of Pediatric Nephrology, Hôpital Robert Debré, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
39
|
Talsma DT, Daha MR, van den Born J. The bittersweet taste of tubulo-interstitial glycans. Nephrol Dial Transplant 2017; 32:611-619. [PMID: 28407128 DOI: 10.1093/ndt/gfw371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023] Open
Abstract
Recently, interesting work was published by Farrar et al. [1] showing the interaction of fucosylated glycoproteins on stressed tubular epithelial cells with collectin-11 leading to complement activation via the lectin route of complement. This elegant work stimulated us to evaluate the dark side (bittersweet taste) of tubulo-interstitial glycans in kidney tissue damage. As will be discussed, glycans not only initiate tubular complement activation but also orchestrate tubulo-interstitial leucocyte recruitment and growth factor responses. In this review we restrict ourselves to tubulo-interstitial damage mainly by proteinuria, ischaemia-reperfusion injury and transplantation, and we discuss the involvement of endothelial and tubular glycans in atypical and Escherichia coli-mediated haemolytic uraemic syndrome. As will be seen, fucosylated, mannosylated, galactosylated and sialylated oligosaccharide structures along with glycosaminoglycans comprise the most important glycans related to kidney injury pathways. Up to now, therapeutic interventions in these glycan-mediated injury pathways are underexplored and warrant further research.
Collapse
Affiliation(s)
- Ditmer T Talsma
- Department of Nephrology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Affiliation(s)
- Megan Garland
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Sebastian Loscher
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| | - Matthew Bogyo
- Cancer
Biology Program, ‡Department of Pathology, §Department of Microbiology and Immunology, and ∥Department of
Chemical and Systems Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, United States
| |
Collapse
|
41
|
Kavaliauskiene S, Dyve Lingelem AB, Skotland T, Sandvig K. Protection against Shiga Toxins. Toxins (Basel) 2017; 9:E44. [PMID: 28165371 PMCID: PMC5331424 DOI: 10.3390/toxins9020044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins consist of an A-moiety and five B-moieties able to bind the neutral glycosphingolipid globotriaosylceramide (Gb3) on the cell surface. To intoxicate cells efficiently, the toxin A-moiety has to be cleaved by furin and transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum. The enzymatically active part of the A-moiety is then translocated to the cytosol, where it inhibits protein synthesis and in some cell types induces apoptosis. Protection of cells can be provided either by inhibiting binding of the toxin to cells or by interfering with any of the subsequent steps required for its toxic effect. In this article we provide a brief overview of the interaction of Shiga toxins with cells, describe some compounds and conditions found to protect cells against Shiga toxins, and discuss whether they might also provide protection in animals and humans.
Collapse
Affiliation(s)
- Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Anne Berit Dyve Lingelem
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
42
|
Moxley RA, Francis DH, Tamura M, Marx DB, Santiago-Mateo K, Zhao M. Efficacy of Urtoxazumab (TMA-15 Humanized Monoclonal Antibody Specific for Shiga Toxin 2) Against Post-Diarrheal Neurological Sequelae Caused by Escherichia coli O157:H7 Infection in the Neonatal Gnotobiotic Piglet Model. Toxins (Basel) 2017; 9:toxins9020049. [PMID: 28134751 PMCID: PMC5331429 DOI: 10.3390/toxins9020049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is the most common cause of hemorrhagic colitis and hemolytic uremic syndrome in human patients, with brain damage and dysfunction the main cause of acute death. We evaluated the efficacy of urtoxazumab (TMA-15, Teijin Pharma Limited), a humanized monoclonal antibody against Shiga toxin (Stx) 2 for the prevention of brain damage, dysfunction, and death in a piglet EHEC infection model. Forty-five neonatal gnotobiotic piglets were inoculated orally with 3 × 109 colony-forming units of EHEC O157:H7 strain EDL933 (Stx1+, Stx2+) when 22–24 h old. At 24 h post-inoculation, piglets were intraperitoneally administered placebo or TMA-15 (0.3, 1.0 or 3.0 mg/kg body weight). Compared to placebo (n = 10), TMA-15 (n = 35) yielded a significantly greater probability of survival, length of survival, and weight gain (p <0.05). The efficacy of TMA-15 against brain lesions and death was 62.9% (p = 0.0004) and 71.4% (p = 0.0004), respectively. These results suggest that TMA-15 may potentially prevent or reduce vascular necrosis and infarction of the brain attributable to Stx2 in human patients acutely infected with EHEC. However, we do not infer that TMA-15 treatment will completely protect human patients infected with EHEC O157:H7 strains that produce both Stx1 and Stx2.
Collapse
Affiliation(s)
- Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA.
| | - Mizuho Tamura
- Teijin Pharma Limited, Pharmacology Research Department, 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan.
| | - David B Marx
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Kristina Santiago-Mateo
- Canadian Food Inspection Agency, Lethbridge Laboratory, Box 640 TWP Rd 9-1, Lethbridge, AB T1J 3Z4, Canada.
| | - Mojun Zhao
- Valley Pathologists, Inc., 1100 South Main Street, Suite 308, Dayton, OH 45409, USA.
| |
Collapse
|
43
|
Flowers LJ, Bou Ghanem EN, Leong JM. Synchronous Disease Kinetics in a Murine Model for Enterohemorrhagic E. coli Infection Using Food-Borne Inoculation. Front Cell Infect Microbiol 2016; 6:138. [PMID: 27857935 PMCID: PMC5093121 DOI: 10.3389/fcimb.2016.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/07/2016] [Indexed: 11/29/2022] Open
Abstract
Upon colonization of the intestinal epithelium, the attaching and effacing (AE) pathogen Enterohemorrhagic Escherichia coli (EHEC) effaces microvilli and forms pedestal-like structures beneath the adherent bacterium. The production of one of its virulence factors, the phage-encoded Shiga toxin (Stx) results in systemic disease, including the development of renal failure. Although EHEC does not productively infect conventional mice, EHEC infection can be modeled in mice utilizing a derivative of the natural murine AE pathogen Citrobacter rodentium (CR). Gavage of mice with CR(ΦStx2dact), a C. rodentium lysogenized by a phage encoding an Stx variant with high potency in mice, features AE lesion formation on intestinal epithelium and Stx-mediated systemic disease, including renal damage. This model is somewhat limited by mouse-to-mouse variation in the course of disease, with the time to severe morbidity (and required euthanasia) varying by as many as 5 days, a feature that limits pathological analysis at defined stages of disease. In the current study, we altered and optimized the preparation, dose, and mode of delivery of CR(ΦStx2dact), using food-borne route of infection to generate highly synchronous disease model. We found that food-borne inoculation of as few as 3 × 104 CR(ΦStx2dact) resulted in productive colonization and severe systemic disease. Upon inoculation of 1 × 108 bacteria, the majority of infected animals suffered weight loss beginning 5 days post-infection and all required euthanasia on day 6 or 7. This enhanced murine model for EHEC infection should facilitate characterization of the pathology associated with specific phases of Stx-mediated disease.
Collapse
Affiliation(s)
- Laurice J Flowers
- Molecular Biology and Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
44
|
Zadravec P, Marečková L, Petroková H, Hodnik V, Perišić Nanut M, Anderluh G, Štrukelj B, Malý P, Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS One 2016; 11:e0162625. [PMID: 27606705 PMCID: PMC5015993 DOI: 10.1371/journal.pone.0162625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Collapse
Affiliation(s)
- Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Lucie Marečková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
45
|
Mejías MP, Hiriart Y, Lauché C, Fernández-Brando RJ, Pardo R, Bruballa A, Ramos MV, Goldbaum FA, Palermo MS, Zylberman V. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS). Sci Rep 2016; 6:24913. [PMID: 27118524 PMCID: PMC4847011 DOI: 10.1038/srep24913] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome.
Collapse
Affiliation(s)
- Maria P Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Yanina Hiriart
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Constanza Lauché
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Romina J Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Romina Pardo
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Andrea Bruballa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - María V Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Fernando A Goldbaum
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Vanesa Zylberman
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| |
Collapse
|
46
|
Abstract
Hemolytic-uremic syndrome (HUS) is a thrombotic microangiopathy that is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Excess complement activation underlies atypical HUS and is evident in Shiga toxin-induced HUS (STEC-HUS). This Spotlight focuses on new knowledge of the role of Escherichia coli-derived toxins and polyphosphate in modulating complement and coagulation, and how they affect disease progression and response to treatment. Such new insights may impact on current and future choices of therapies for STEC-HUS.
Collapse
|
47
|
Kaper JB, O'Brien AD. Overview and Historical Perspectives. Microbiol Spectr 2014; 2:10.1128/microbiolspec.EHEC-0028-2014. [PMID: 25590020 PMCID: PMC4290666 DOI: 10.1128/microbiolspec.ehec-0028-2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 12/16/2022] Open
Abstract
In this overview, we describe the history of Shiga toxin (Stx)-producing Escherichia coli (STEC) in two phases. In phase one, between 1977 and 2011, we learned that E. coli could produce Shiga toxin and cause both hemorrhagic colitis and the hemolytic-uremic syndrome in humans and that the prototype STEC-E. coli O157:H7-adheres to and effaces intestinal epithelial cells by a mechanism similar to that of enteropathogenic E. coli. We also recognized that the genes for Stx are typically encoded on a lysogenic phage; that STEC O157:H7 harbors a large pathogenicity island that encodes the elements needed for the characteristic attaching and effacing lesion; and that the most severe cases of human disease are linked to production of Stx type 2a, not Stx type 1a. Phase two began with a large food-borne outbreak of hemorrhagic colitis and hemolytic-uremic syndrome in Germany in 2011. That outbreak was caused by a novel strain consisting of enteroaggregative E. coli O104:H4 transduced by a Stx2a-converting phage. From this outbreak we learned that any E. coli strain that can adhere tightly to the human bowel (either by a biofilm-like mechanism as in E. coli O104:H4 or by an attaching and effacing mechanism as in E. coli O157:H7) can cause severe diarrheal and systemic illness when it acquires the capacity to produce Stx2a. This overview provides the basis for the review of current information regarding these fascinating and complex pathogens.
Collapse
Affiliation(s)
- James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21122
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|