1
|
Leal-Dutra CA, Vizueta J, Baril T, Kooij PW, Rødsgaard-Jørgensen A, Conlon BH, Croll D, Shik JZ. Genomic Signatures of Domestication in a Fungus Obligately Farmed by Leafcutter Ants. Mol Biol Evol 2024; 41:msae197. [PMID: 39288321 PMCID: PMC11451569 DOI: 10.1093/molbev/msae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
The naturally selected fungal crop (Leucoagaricus gongylophorus) farmed by leafcutter ants shows striking parallels with artificially selected plant crops domesticated by humans (e.g. polyploidy, engorged nutritional rewards, and dependence on cultivation). To date, poorly resolved L. gongylophorus genome assemblies based on short-read sequencing have constrained hypotheses about how millions of years under cultivation by ants shaped the fungal crop genome and potentially drove domestication. We use PacBio HiFi sequencing of L. gongylophorus from the leafcutter ant Atta colombica to identify 18 putatively novel biosynthetic gene clusters that likely cemented life as a cultivar (e.g. plant fragment degradation, ant-farmer communication, and antimicrobial defense). Comparative analyses with cultivated and free-living fungi showed genomic signatures of stepwise domestication transitions: (i) free-living to ant-cultivated: loss of genes conferring stress response and detoxification; (ii) hyphal food to engorged nutritional rewards: expansions of genes governing cellular homeostasis, carbohydrate metabolism, and siderophore biosynthesis; and (iii) detrital provisioning to freshly cut plant fragments: gene expansions promoting cell wall biosynthesis, fatty acid metabolism, and DNA repair. Comparisons across L. gongylophorus fungi farmed by 3 leafcutter ant species highlight genomic signatures of exclusively vertical clonal propagation and widespread transposable element activity. These results show how natural selection can shape domesticated cultivar genomes toward long-term ecological resilience of farming systems that have thrived across millennia.
Collapse
Affiliation(s)
- Caio A Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tobias Baril
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000 Neuchâtel, Switzerland
| | - Pepijn W Kooij
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP, Brazil
| | - Asta Rødsgaard-Jørgensen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Benjamin H Conlon
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000 Neuchâtel, Switzerland
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092 Ancon, Republic of Panama
| |
Collapse
|
2
|
Urquhart A, Vogan AA, Gluck-Thaler E. Starships: a new frontier for fungal biology. Trends Genet 2024:S0168-9525(24)00183-5. [PMID: 39299886 DOI: 10.1016/j.tig.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
Collapse
Affiliation(s)
- Andrew Urquhart
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Jovanska L, Lin IC, Yao JS, Chen CL, Liu HC, Li WC, Chuang YC, Chuang CN, Yu ACH, Lin HN, Pong WL, Yu CI, Su CY, Chen YP, Chen RS, Hsueh YP, Yuan HS, Timofejeva L, Wang TF. DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis. Nucleic Acids Res 2024; 52:9551-9573. [PMID: 39021337 PMCID: PMC11381340 DOI: 10.1093/nar/gkae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.
Collapse
Affiliation(s)
| | - I-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jhong-Syuan Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ljudmilla Timofejeva
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva 48309, Estonia
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
4
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
6
|
Wang Z, Bian Z, Wang D, Xu J. Functions and mechanisms of A-to-I RNA editing in filamentous ascomycetes. PLoS Pathog 2024; 20:e1012238. [PMID: 38843141 PMCID: PMC11156358 DOI: 10.1371/journal.ppat.1012238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - JinRong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
7
|
Abraham LN, Oggenfuss U, Croll D. Population-level transposable element expression dynamics influence trait evolution in a fungal crop pathogen. mBio 2024; 15:e0284023. [PMID: 38349152 PMCID: PMC10936205 DOI: 10.1128/mbio.02840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
8
|
Oggenfuss U, Badet T, Croll D. A systematic screen for co-option of transposable elements across the fungal kingdom. Mob DNA 2024; 15:2. [PMID: 38245743 PMCID: PMC10799480 DOI: 10.1186/s13100-024-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Microbiology and Immunology, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Westerberg I, Ament-Velásquez SL, Vogan AA, Johannesson H. Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations. Mob DNA 2024; 15:1. [PMID: 38218923 PMCID: PMC10787394 DOI: 10.1186/s13100-023-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.
Collapse
Affiliation(s)
- Ivar Westerberg
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.
| | - Hanna Johannesson
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden.
| |
Collapse
|
10
|
Duhamel M, Hood ME, Rodríguez de la Vega RC, Giraud T. Dynamics of transposable element accumulation in the non-recombining regions of mating-type chromosomes in anther-smut fungi. Nat Commun 2023; 14:5692. [PMID: 37709766 PMCID: PMC10502011 DOI: 10.1038/s41467-023-41413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
In the absence of recombination, the number of transposable elements (TEs) increases due to less efficient selection, but the dynamics of such TE accumulations are not well characterized. Leveraging a dataset of 21 independent events of recombination cessation of different ages in mating-type chromosomes of Microbotryum fungi, we show that TEs rapidly accumulated in regions lacking recombination, but that TE content reached a plateau at ca. 50% of occupied base pairs by 1.5 million years following recombination suppression. The same TE superfamilies have expanded in independently evolved non-recombining regions, in particular rolling-circle replication elements (Helitrons). Long-terminal repeat (LTR) retrotransposons of the Copia and Ty3 superfamilies also expanded, through transposition bursts (distinguished from gene conversion based on LTR divergence), with both non-recombining regions and autosomes affected, suggesting that non-recombining regions constitute TE reservoirs. This study improves our knowledge of genome evolution by showing that TEs can accumulate through bursts, following non-linear decelerating dynamics.
Collapse
Affiliation(s)
- Marine Duhamel
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France.
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Michael E Hood
- Department of Biology, Amherst College, 01002-5000, Amherst, MA, USA
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, IDEEV, CNRS, Université Paris-Saclay, AgroParisTech, Bâtiment 680, 12 route RD128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Sy VT, Boone EC, Xiao H, Vierling MM, Schmitz SF, Ung Q, Trawick SS, Hammond TM, Shiu PKT. A DEAD-box RNA helicase mediates meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2023; 13:jkad083. [PMID: 37052947 PMCID: PMC10411587 DOI: 10.1093/g3journal/jkad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.
Collapse
Affiliation(s)
- Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Shannon F Schmitz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Quiny Ung
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sterling S Trawick
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Gautier A, Laval V, Faure S, Rouxel T, Balesdent MH. Polymorphism of Avirulence Genes and Adaptation to Brassica Resistance Genes Is Gene-Dependent in the Phytopathogenic Fungus Leptosphaeria maculans. PHYTOPATHOLOGY 2023; 113:1222-1232. [PMID: 36802873 DOI: 10.1094/phyto-12-22-0466-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fungal phytopathogen Leptosphaeria maculans, which causes stem canker (blackleg) of rapeseed (Brassica napus), is mainly controlled worldwide by genetic resistance, which includes major resistance genes (Rlm). This model is one of those for which the highest number of avirulence genes (AvrLm) has been cloned. In many systems, including the L. maculans-B. napus interaction, intense use of resistance genes exerts strong selection pressure on the corresponding avirulent isolates, and the fungi may rapidly escape resistance through various molecular events which modify the avirulence genes. In the literature, the study of polymorphism at avirulence loci is often focused on single genes under selection pressure. In this study, we investigate allelic polymorphism at 11 avirulence loci in a French population of 89 L. maculans isolates collected on a trap cultivar in four geographic locations in the 2017-2018 cropping season. The corresponding Rlm genes have been (i) used for a long time, (ii) recently used, or (iii) unused in agricultural practice. The sequence data generated indicate an extreme diversity of situations. For example, genes submitted to an ancient selection may have either been deleted in populations (AvrLm1) or replaced by a single-nucleotide mutated virulent version (AvrLm2, AvrLm5-9). Genes that have never been under selection may either be nearly invariant (AvrLm6, AvrLm10A, AvrLm10B), exhibit rare deletions (AvrLm11, AvrLm14), or display a high diversity of alleles and isoforms (AvrLmS-Lep2). These data suggest that the evolutionary trajectory of avirulence/virulence alleles is gene-dependent and independent of selection pressure in L. maculans. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Angélique Gautier
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Valérie Laval
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| |
Collapse
|
13
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
14
|
Ma C, Liu J, Tang J, Sun Y, Jiang X, Zhang T, Feng Y, Liu Q, Wang L. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microb Cell Fact 2023; 22:97. [PMID: 37161391 PMCID: PMC10170752 DOI: 10.1186/s12934-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina, Ascomycota) is a well-known lignocellulolytic enzymes-producing strain in industry. To increase the fermentation titer of lignocellulolytic enzymes, random mutagenesis and rational genetic engineering in T. reesei were carried out since it was initially found in the Solomon Islands during the Second World War. Especially the continuous exploration of the underlying regulatory network during (hemi)cellulase gene expression in the post-genome era provided various strategies to develop an efficient fungal cell factory for these enzymes' production. Meanwhile, T. reesei emerges competitiveness potential as a filamentous fungal chassis to produce proteins from other species (e.g., human albumin and interferon α-2b, SARS-CoV-2 N antigen) in virtue of the excellent expression and secretion system acquired during the studies about (hemi)cellulase production. However, all the achievements in high yield of (hemi)cellulases are impossible to finish without high-efficiency genetic strategies to analyze the proper functions of those genes involved in (hemi)cellulase gene expression or secretion. Here, we in detail summarize the current strategies employed to investigate gene functions in T. reesei. These strategies are supposed to be beneficial for extending the potential of T. reesei in prospective strain engineering.
Collapse
Affiliation(s)
- Chixiang Ma
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Jialong Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Tang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanlu Sun
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Xiaojie Jiang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Tongtong Zhang
- China Medical University-The Queen's University of Belfast Joint College, Shenyang, Liaoning, 110122, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qinghua Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
15
|
Komluski J, Habig M, Stukenbrock EH. Repeat-Induced Point Mutation and Gene Conversion Coinciding with Heterochromatin Shape the Genome of a Plant-Pathogenic Fungus. mBio 2023:e0329022. [PMID: 37093087 DOI: 10.1128/mbio.03290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Meiosis is associated with genetic changes in the genome-via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutation rate. To date, however, the exact distribution and type of meiosis-associated changes and the role of the chromatin conformation in this context are largely unexplored. Here, we determine recombination, gene conversion, and de novo mutations using whole-genome sequencing of all meiotic products of 23 individual meioses in Zymoseptoria tritici, an important pathogen of wheat. We confirm a high genome-wide recombination rate of 65 centimorgan (cM)/Mb and see higher recombination rates on the accessory compared to core chromosomes. A substantial fraction of 0.16% of all polymorphic markers was affected by gene conversions, showing a weak GC-bias and occurring at higher frequency in regions of constitutive heterochromatin, indicated by the histone modification H3K9me3. The de novo mutation rate associated with meiosis was approximately three orders of magnitude higher than the corresponding mitotic mutation rate. Importantly, repeat-induced point mutation (RIP), a fungal defense mechanism against duplicated sequences, is active in Z. tritici and responsible for the majority of these de novo meiotic mutations. Our results indicate that the genetic changes associated with meiosis are a major source of variability in the genome of an important plant pathogen and shape its evolutionary trajectory. IMPORTANCE The impact of meiosis on the genome composition via gene conversion and mutations is mostly poorly understood, in particular, for non-model species. Here, we sequenced all four meiotic products for 23 individual meioses and determined the genetic changes caused by meiosis for the important fungal wheat pathogen Zymoseptoria tritici. We found a high rate of gene conversions and an effect of the chromatin conformation on gene conversion rates. Higher conversion rates were found in regions enriched with the H3K9me3-a mark for constitutive heterochromatin. Most importantly, meiosis was associated with a much higher frequency of de novo mutations than mitosis; 78% of the meiotic mutations were caused by repeat-induced point mutations-a fungal defense mechanism against duplicated sequences. In conclusion, the genetic changes associated with meiosis are therefore a major factor shaping the genome of this fungal pathogen.
Collapse
Affiliation(s)
- Jovan Komluski
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
16
|
Urquhart AS, Vogan AA, Gardiner DM, Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 2023; 120:e2214521120. [PMID: 37023132 PMCID: PMC10104507 DOI: 10.1073/pnas.2214521120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023] Open
Abstract
Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW2109, Australia
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, 752 36Uppsala, Sweden
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- University of Queensland, St Lucia, QLD4067, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
17
|
Tomar SS, Hua-Van A, Le Rouzic A. A population genetics theory for piRNA-regulated transposable elements. Theor Popul Biol 2023; 150:1-13. [PMID: 36863578 DOI: 10.1016/j.tpb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. Population genetics models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated - the so-called TE regulation "trap model". We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition-selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition-selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.
Collapse
Affiliation(s)
- Siddharth S Tomar
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| | - Aurélie Hua-Van
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
18
|
Hoguin A, Yang F, Groisillier A, Bowler C, Genovesio A, Ait-Mohamed O, Vieira FRJ, Tirichine L. The model diatom Phaeodactylum tricornutum provides insights into the diversity and function of microeukaryotic DNA methyltransferases. Commun Biol 2023; 6:253. [PMID: 36894681 PMCID: PMC9998398 DOI: 10.1038/s42003-023-04629-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Cytosine methylation is an important epigenetic mark involved in the transcriptional control of transposable elements in mammals, plants and fungi. The Stramenopiles-Alveolate-Rhizaria (SAR) lineages are a major group of ecologically important marine microeukaryotes, including the phytoplankton groups diatoms and dinoflagellates. However, little is known about their DNA methyltransferase diversity. Here, we performed an in-silico analysis of DNA methyltransferases found in marine microeukaryotes and showed that they encode divergent DNMT3, DNMT4, DNMT5 and DNMT6 enzymes. Furthermore, we found three classes of enzymes within the DNMT5 family. Using a CRISPR/Cas9 strategy we demonstrated that the loss of the DNMT5a gene correlates with a global depletion of DNA methylation and overexpression of young transposable elements in the model diatom Phaeodactylum tricornutum. The study provides a view of the structure and function of a DNMT family in the SAR supergroup using an attractive model species.
Collapse
Affiliation(s)
- Antoine Hoguin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Feng Yang
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | | | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Ouardia Ait-Mohamed
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France.
- Laboratory of Computational and Quantitative Biology-LCQB - UMR 7238 CNRS-Sorbonne Université. Institut de Biologie Paris Seine, 75005, Paris, France.
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France.
| |
Collapse
|
19
|
Feurtey A, Lorrain C, McDonald MC, Milgate A, Solomon PS, Warren R, Puccetti G, Scalliet G, Torriani SFF, Gout L, Marcel TC, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Goodwin SB, Genissel A, Seidl MF, Stukenbrock EH, Lebrun MH, Kema GHJ, McDonald BA, Croll D. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nat Commun 2023; 14:1059. [PMID: 36828814 PMCID: PMC9958100 DOI: 10.1038/s41467-023-36674-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Human activity impacts the evolutionary trajectories of many species worldwide. Global trade of agricultural goods contributes to the dispersal of pathogens reshaping their genetic makeup and providing opportunities for virulence gains. Understanding how pathogens surmount control strategies and cope with new climates is crucial to predicting the future impact of crop pathogens. Here, we address this by assembling a global thousand-genome panel of Zymoseptoria tritici, a major fungal pathogen of wheat reported in all production areas worldwide. We identify the global invasion routes and ongoing genetic exchange of the pathogen among wheat-growing regions. We find that the global expansion was accompanied by increased activity of transposable elements and weakened genomic defenses. Finally, we find significant standing variation for adaptation to new climates encountered during the global spread. Our work shows how large population genomic panels enable deep insights into the evolutionary trajectory of a major crop pathogen.
Collapse
Affiliation(s)
- Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cécile Lorrain
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Megan C McDonald
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Peter S Solomon
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rachael Warren
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332, Stein, Switzerland
| | | | | | - Lilian Gout
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Thierry C Marcel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Frédéric Suffert
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 9472, USA
| | | | - Anne Genissel
- Université Paris Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Michael F Seidl
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
- Utrecht University, Theoretical Biology and Bioinformatics, Utrecht, The Netherlands
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | | | - Gert H J Kema
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, The Netherlands
| | - Bruce A McDonald
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
20
|
Lustig AJ. Investigating the origin of subtelomeric and centromeric AT-rich elements in Aspergillus flavus. PLoS One 2023; 18:e0279148. [PMID: 36758027 PMCID: PMC9910759 DOI: 10.1371/journal.pone.0279148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
An in silico study of Aspergillus flavus genome stability uncovered significant variations in both coding and non-coding regions. The non-coding insertions uniformly consisted of AT-rich sequences that are evolutionarily maintained, albeit distributed at widely different sites in an array of A. flavus strains. A survey of ≥ 2kb AT-rich elements (AT ≥ 70%; ATEs) in non-centromeric regions uncovered two major categories of ATEs. The first category is composed of homologous insertions at ectopic, non-allelic sites that contain homology to transposable elements (TEs; Classes B, C, D, and E). Strains differed significantly in frequency, position, and TE type, but displayed a common enrichment in subtelomeric regions. The TEs were heavily mutated, with patterns consistent with the ancestral activity of repeat-induced point mutations (RIP). The second category consists of a conserved set of novel subtelomeric ATE repeats (Classes A, G, G, H, I and J) which lack discernible TEs and, unlike TEs, display a constant polarity relative to the telomere. Members of one of these classes are derivatives of a progenitor ATE that is predicted to have undergone extensive homologous recombination during evolution. A third category of ATEs consists of ~100 kb regions at each centromere. Centromeric ATEs and TE clusters within these centromeres display a high level of sequence identity between strains. These studies suggest that transposition and RIP are forces in the evolution of subtelomeric and centromeric structure and function.
Collapse
Affiliation(s)
- Arthur J. Lustig
- Department of Biochemistry and Molecular Biology, Tulane University Medical School, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wacker T, Helmstetter N, Wilson D, Fisher MC, Studholme DJ, Farrer RA. Two-speed genome evolution drives pathogenicity in fungal pathogens of animals. Proc Natl Acad Sci U S A 2023; 120:e2212633120. [PMID: 36595674 PMCID: PMC9926174 DOI: 10.1073/pnas.2212633120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
The origins and evolution of virulence in amphibian-infecting chytrids Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are largely unknown. Here, we use deep nanopore sequencing of Bsal and comparative genomics against 21 high-quality genome assemblies that span the fungal Chytridiomycota. We discover that Bsal has the most repeat-rich genome of the Chytridiomycota, comprising 40.9% repetitive elements; this genome has expanded to more than 3× the length of its conspecific Bd, with autonomous and fully functional LTR/Gypsy elements contributing significantly to the expansion. The M36 metalloprotease virulence factors are highly expanded (n = 177) in Bsal, most of which (53%) are flanked by transposable elements, suggesting they have a repeat-associated expansion. We find enrichment upstream of M36 metalloprotease genes of three novel repeat families belonging to the repeat superfamily of LINEs that are implicated with gene copy number variations. Additionally, Bsal has a highly compartmentalized genome architecture, with virulence factors enriched in gene-sparse/repeat-rich compartments, while core conserved genes are enriched in gene-rich/repeat-poor compartments. Genes upregulated during infection are primarily found in the gene-sparse/repeat-rich compartment in both Bd and Bsal. Furthermore, genes with signatures of positive selection in Bd are enriched in repeat-rich regions, suggesting these regions are a cradle for the evolution of chytrid pathogenicity. These are the hallmarks of two-speed genome evolution, and this study provides evidence of two-speed genomes in an animal pathogen, shedding light on the evolution of fungal pathogens of vertebrates driving global declines and extinctions.
Collapse
Affiliation(s)
- Theresa Wacker
- Medical Research Council Centre for Medical Mycology at the University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Nicolas Helmstetter
- Medical Research Council Centre for Medical Mycology at the University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Matthew C. Fisher
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, LondonW12 0BZ, United Kingdom
| | - David J. Studholme
- Department of Biosciences, University of Exeter, ExeterEX4 4QD, United Kingdom
| | - Rhys A. Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, ExeterEX4 4QD, United Kingdom
| |
Collapse
|
22
|
Fraser CJ, Whitehall SK. Heterochromatin in the fungal plant pathogen, Zymoseptoria tritici: Control of transposable elements, genome plasticity and virulence. Front Genet 2022; 13:1058741. [DOI: 10.3389/fgene.2022.1058741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin is a repressive chromatin state that plays key roles in the functional organisation of eukaryotic genomes. In fungal plant pathogens, effector genes that are required for host colonization tend to be associated with heterochromatic regions of the genome that are enriched with transposable elements. It has been proposed that the heterochromatin environment silences effector genes in the absence of host and dynamic chromatin remodelling facilitates their expression during infection. Here we discuss this model in the context of the key wheat pathogen, Zymoseptoria tritici. We cover progress in understanding the deposition and recognition of heterochromatic histone post translational modifications in Z. tritici and the role that heterochromatin plays in control of genome plasticity and virulence.
Collapse
|
23
|
Sarkies P. Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochem Soc Trans 2022; 50:1179-1190. [PMID: 35521905 PMCID: PMC9246332 DOI: 10.1042/bst20210725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is an epigenetic modification with a very long evolutionary history. However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-wide distribution of methylation diversifies rapidly in different lineages, and DNA methylation is lost altogether surprisingly frequently. The growing availability of genomic and epigenomic sequencing across organisms highlights this diversity but also illuminates potential factors that could explain why both the DNA methylation machinery and its genome-wide distribution evolve so rapidly. Key to this are new discoveries about the fitness costs associated with DNA methylation, and new theories about how the fundamental biochemical mechanisms of DNA methylation introduction and maintenance could explain how new genome-wide patterns of methylation evolve.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, U.K
- MRC London Institute of Molecular Biology, London, U.K
- Institute of Clinical Sciences, Imperial College London, London, U.K
| |
Collapse
|
24
|
Telomere-to-Telomere Genome Sequences across a Single Genus Reveal Highly Variable Chromosome Rearrangement Rates but Absolute Stasis of Chromosome Number. J Fungi (Basel) 2022; 8:jof8070670. [PMID: 35887427 PMCID: PMC9318876 DOI: 10.3390/jof8070670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.
Collapse
|
25
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
26
|
De Miccolis Angelini RM, Landi L, Raguseo C, Pollastro S, Faretra F, Romanazzi G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front Microbiol 2022; 13:854852. [PMID: 35356516 PMCID: PMC8959702 DOI: 10.3389/fmicb.2022.854852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monilinia species are among the most devastating fungi worldwide as they cause brown rot and blossom blight on fruit trees. To understand the molecular bases of their pathogenic lifestyles, we compared the newly assembled genomes of single strains of Monilinia fructicola, M. fructigena and M. laxa, with those of Botrytis cinerea and Sclerotinia sclerotiorum, as the closest species within Sclerotiniaceae. Phylogenomic analysis of orthologous proteins and syntenic investigation suggest that M. laxa is closer to M. fructigena than M. fructicola, and is closest to the other investigated Sclerotiniaceae species. This indicates that M. laxa was the earliest result of the speciation process. Distinct evolutionary profiles were observed for transposable elements (TEs). M. fructicola and M. laxa showed older bursts of TE insertions, which were affected (mainly in M. fructicola) by repeat-induced point (RIP) mutation gene silencing mechanisms. These suggested frequent occurrence of the sexual process in M. fructicola. More recent TE expansion linked with low RIP action was observed in M. fructigena, with very little in S. sclerotiorum and B. cinerea. The detection of active non-syntenic TEs is indicative of horizontal gene transfer and has resulted in alterations in specific gene functions. Analysis of candidate effectors, biosynthetic gene clusters for secondary metabolites and carbohydrate-active enzymes, indicated that Monilinia genus has multiple virulence mechanisms to infect host plants, including toxins, cell-death elicitor, putative virulence factors and cell-wall-degrading enzymes. Some species-specific pathogenic factors might explain differences in terms of host plant and organ preferences between M. fructigena and the other two Monilinia species.
Collapse
Affiliation(s)
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Celeste Raguseo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
27
|
Noar RD, Thomas E, Daub ME. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. PLANTS (BASEL, SWITZERLAND) 2022; 11:948. [PMID: 35406928 PMCID: PMC9002641 DOI: 10.3390/plants11070948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| |
Collapse
|
28
|
Radman M. Speciation of Genes and Genomes: Conservation of DNA Polymorphism by Barriers to Recombination Raised by Mismatch Repair System. Front Genet 2022; 13:803690. [PMID: 35295946 PMCID: PMC8918686 DOI: 10.3389/fgene.2022.803690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Some basic aspects of human and animal biology and evolution involve the establishment of biological uniqueness of species and individuals within their huge variety. The discrimination among closely related species occurs in their offspring at the level of chromosomal DNA sequence homology, which is required for fertility as the hallmark of species. Biological identification of individuals, i.e., of their biological “self”, occurs at the level of protein sequences presented by the MHC/HLA complex as part of the immune system that discriminates non-self from self. Here, a mechanistic molecular model is presented that can explain how DNA sequence divergence and the activity of key mismatch repair proteins, MutS and MutL, lead to 1) genetic separation of closely related species (sympatric speciation) (Fitch and Ayala, Proceedings of the National Academy of Sciences, 1994, 91, 6717–6720), 2) the stability of genomes riddled by diverged repeated sequences, and 3) conservation of highly polymorphic DNA sequence blocks that constitute the immunological self. All three phenomena involve suppression of recombination between diverged homologies, resulting in prevention of gene sharing between closely related genomes (evolution of new species) as well as sequence sharing between closely related genes within a genome (e.g., evolution of immunoglobulin, MHC, and other gene families bearing conserved polymorphisms).
Collapse
Affiliation(s)
- Miroslav Radman
- Mediterranean Institute for Life Sciences—MedILS, Split, Croatia
- Faculty of Medicine, University R. Descartes, Paris, France
- NAOS Institute for Life Sciences, Aix-en-Provence, France
- School of Medicine, University of Split, Split, Croatia
- *Correspondence: Miroslav Radman,
| |
Collapse
|
29
|
Lohmar JM, Rhoades NA, Patel TN, Proctor RH, Hammond TM, Brown DW. A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems. Genetics 2022; 221:6528853. [PMID: 35166849 DOI: 10.1093/genetics/iyac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
Spore killers are meiotic drive elements that can block development of sexual spores in fungi. In the maize ear rot and mycotoxin-producing fungus Fusarium verticillioides, a spore killer called SkK has been mapped to a 102-kb interval of chromosome V. Here, we show that a gene within this interval, SKC1, is required for SkK-mediated spore killing and meiotic drive. We also demonstrate that SKC1 is associated with at least four transcripts, two sense (sense-SKC1a and sense-SKC1b) and two antisense (antisense-SKC1a and antisense-SKC1b). Both antisense SKC1 transcripts lack obvious protein-coding sequences and thus appear to be non-coding RNAs. In contrast, sense-SKC1a is a protein-coding transcript that undergoes A-to-I editing to sense-SKC1b in sexual tissue. Translation of sense-SKC1a produces a 70 amino acid protein (Skc1a), whereas translation of sense-SKC1b produces an 84 amino acid protein (Skc1b). Heterologous expression analysis of SKC1 transcripts shows that sense-SKC1a also undergoes A-to-I editing to sense-SKC1b during the Neurospora crassa sexual cycle. Site directed mutagenesis studies indicate that Skc1b is responsible for spore killing in F. verticillioides and that it induces most meiotic cells to die in N. crassa. Finally, we report that SKC1 homologs are present in over 20 Fusarium species. Overall, our results demonstrate that fungal meiotic drive elements like SKC1 can influence the outcome of meiosis by hijacking a cell's A-to-I editing machinery and that the involvement of A-to-I editing in a fungal meiotic drive system does not preclude its horizontal transfer to a distantly related species.
Collapse
Affiliation(s)
- Jessica M Lohmar
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| | - Nicholas A Rhoades
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Tejas N Patel
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| |
Collapse
|
30
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Colabardini AC, Wang F, Miao Z, Pardeshi L, Valero C, de Castro PA, Akiyama DY, Tan K, Nora LC, Silva-Rocha R, Marcet-Houben M, Gabaldón T, Fill T, Wong KH, Goldman GH. Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genet 2022; 18:e1010001. [PMID: 35007279 PMCID: PMC8782537 DOI: 10.1371/journal.pgen.1010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Yuri Akiyama
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Luisa Czamanski Nora
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR of China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR of China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
32
|
Complete Genome Sequences and Genome-Wide Characterization of Trichoderma Biocontrol Agents Provide New Insights into their Evolution and Variation in Genome Organization, Sexual Development, and Fungal-Plant Interactions. Microbiol Spectr 2021; 9:e0066321. [PMID: 34908505 PMCID: PMC8672877 DOI: 10.1128/spectrum.00663-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trichoderma spp. represent one of the most important fungal genera to mankind and in natural environments. The genus harbors prolific producers of wood-decaying enzymes, biocontrol agents against plant pathogens, plant-growth-promoting biofertilizers, as well as model organisms for studying fungal-plant-plant pathogen interactions. Pursuing highly accurate, contiguous, and chromosome-level reference genomes has become a primary goal of fungal research communities. Here, we report the chromosome-level genomic sequences and whole-genome annotation data sets of four strains used as biocontrol agents or biofertilizers (Trichoderma virens Gv29-8, Trichoderma virens FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1). Our results provide comprehensive categorization, correct positioning, and evolutionary detail of both nuclear and mitochondrial genomes, including telomeres, AT-rich blocks, centromeres, transposons, mating-type loci, nuclear-encoded mitochondrial sequences, as well as many new secondary metabolic and carbohydrate-active enzyme gene clusters. We have also identified evolutionarily conserved core genes contributing to plant-fungal interactions, as well as variations potentially linked to key behavioral traits such as sex, genome defense, secondary metabolism, and mycoparasitism. The genomic resources we provide herein significantly extend our knowledge not only of this economically important fungal genus, but also fungal evolution and basic biology in general. IMPORTANCE Telomere-to-telomere and gapless reference genome assemblies are necessary to ensure that all genomic variants are studied and discovered, including centromeres, telomeres, AT-rich blocks, mating type loci, biosynthetic, and metabolic gene clusters. Here, we applied long-range sequencing technologies to determine the near-completed genome sequences of four widely used biocontrol agents or biofertilizers: Trichoderma virens Gv29-8 and FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1. Like those of three Trichoderma reesei wild isolates [QM6a, CBS999.97(MAT1-1) and CBS999.97(MAT1-2)] we reported previously, these four biocontrol agent genomes each contain seven nuclear chromosomes and a circular mitochondrial genome. Substantial intraspecies and intragenus diversities are also discovered, including single nucleotide polymorphisms, chromosome shuffling, as well as genomic relics derived from historical transposition events and repeat-induced point (RIP) mutations.
Collapse
|
33
|
Dallaire A, Manley BF, Wilkens M, Bista I, Quan C, Evangelisti E, Bradshaw CR, Ramakrishna NB, Schornack S, Butter F, Paszkowski U, Miska EA. Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis. Genome Res 2021; 31:2290-2302. [PMID: 34772700 PMCID: PMC8647823 DOI: 10.1101/gr.275752.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi form mutualistic relationships with most land plant species. AM fungi have long been considered as ancient asexuals. Long-term clonal evolution would be remarkable for a eukaryotic lineage and suggests the importance of alternative mechanisms to promote genetic variability facilitating adaptation. Here, we assessed the potential of transposable elements for generating such genomic diversity. The dynamic expression of TEs during Rhizophagus irregularis spore development suggests ongoing TE activity. We find Mutator-like elements located near genes belonging to highly expanded gene families. Whole-genome epigenomic profiling of R. irregularis provides direct evidence of DNA methylation and small RNA production occurring at TE loci. Our results support a model in which TE activity shapes the genome, while DNA methylation and small RNA-mediated silencing keep their overproliferation in check. We propose that a well-controlled TE activity directly contributes to genome evolution in AM fungi.
Collapse
Affiliation(s)
- Alexandra Dallaire
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Bethan F Manley
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Maya Wilkens
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iliana Bista
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Clement Quan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Edouard Evangelisti
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Navin B Ramakrishna
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Uta Paszkowski
- Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, United Kingdom
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
34
|
Carlier F, Nguyen TS, Mazur AK, Gladyshev E. Modulation of C-to-T mutation by recombination-independent pairing of closely positioned DNA repeats. Biophys J 2021; 120:4325-4336. [PMID: 34509507 DOI: 10.1016/j.bpj.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Repeat-induced point mutation is a genetic process that creates cytosine-to-thymine (C-to-T) transitions in duplicated genomic sequences in fungi. Repeat-induced point mutation detects duplications (irrespective of their origin, specific sequence, coding capacity, and genomic positions) by a recombination-independent mechanism that likely matches intact DNA double helices directly, without relying on the annealing of complementary single strands. In the fungus Neurospora crassa, closely positioned repeats can induce mutation of the adjoining nonrepetitive regions. This process is related to heterochromatin assembly and requires the cytosine methyltransferase DIM-2. Using DIM-2-dependent mutation as a readout of homologous pairing, we find that GC-rich repeats produce a much stronger response than AT-rich repeats, independently of their intrinsic propensity to become mutated. We also report that direct repeats trigger much stronger DIM-2-dependent mutation than inverted repeats. These results can be rationalized in the light of a recently proposed model of homologous DNA pairing, in which DNA double helices associate by forming sequence-specific quadruplex-based contacts with a concomitant release of supercoiling. A similar process featuring pairing-induced supercoiling may initiate epigenetic silencing of repetitive DNA in other organisms, including humans.
Collapse
Affiliation(s)
- Florian Carlier
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Tinh-Suong Nguyen
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France
| | - Alexey K Mazur
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France; CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France.
| | - Eugene Gladyshev
- Group "Fungal Epigenomics", Department of Mycology, Institut Pasteur, Paris, France.
| |
Collapse
|
35
|
Xiao H, Vierling MM, Kennedy RF, Boone EC, Decker LM, Sy VT, Haynes JB, Williams MA, Shiu PKT. Involvement of RNA granule proteins in meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2021; 11:jkab179. [PMID: 34568932 PMCID: PMC8482848 DOI: 10.1093/g3journal/jkab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/13/2021] [Indexed: 11/14/2022]
Abstract
In Neurospora crassa, expression from an unpaired gene is suppressed by a mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD utilizes common RNA interference (RNAi) factors to silence target mRNAs. Here, we report that Neurospora CAR-1 and CGH-1, homologs of two Caenorhabditis elegans RNA granule components, are involved in MSUD. These fungal proteins are found in the perinuclear region and P-bodies, much like their worm counterparts. They interact with components of the meiotic silencing complex (MSC), including the SMS-2 Argonaute. This is the first time MSUD has been linked to RNA granule proteins.
Collapse
Affiliation(s)
- Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rana F Kennedy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Logan M Decker
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jackson B Haynes
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michelle A Williams
- Present address: Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
36
|
Fouché S, Oggenfuss U, Chanclud E, Croll D. A devil's bargain with transposable elements in plant pathogens. Trends Genet 2021; 38:222-230. [PMID: 34489138 DOI: 10.1016/j.tig.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Transposable elements (TEs) spread in genomes through self-copying mechanisms and are a major cause of genome expansions. Plant pathogens have finely tuned the expression of virulence factors to rely on epigenetic control targeted at nearby TEs. Stress experienced during the plant infection process leads to derepression of TEs and concurrently allows the expression of virulence factors. We argue that the derepression of TEs elements causes an evolutionary conflict by favoring TEs that can be reactivated. Active TEs and recent genome size expansions indicate that plant pathogens could face long-term consequences from the short-term benefit of fine-tuning the infection process. Hence, encoding key virulence factors close to TEs under epigenetic control constitutes a devil's bargain for pathogens.
Collapse
Affiliation(s)
- Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Department of Organismal Biology - Systematic Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Chanclud
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
37
|
Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, Hauser A, Hahn M, Weiberg A. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. Genome Biol 2021; 22:225. [PMID: 34399815 PMCID: PMC8365987 DOI: 10.1186/s13059-021-02446-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/26/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Retrotransposons are genetic elements inducing mutations in all domains of life. Despite their detrimental effect, retrotransposons can become temporarily active during epigenetic reprogramming and cellular stress response, which may accelerate host genome evolution. In fungal pathogens, a positive role has been attributed to retrotransposons when shaping genome architecture and expression of genes encoding pathogenicity factors; thus, retrotransposons are known to influence pathogenicity. RESULTS We uncover a hitherto unknown role of fungal retrotransposons as being pathogenicity factors, themselves. The aggressive fungal plant pathogen, Botrytis cinerea, is known to deliver some long-terminal repeat (LTR) deriving regulatory trans-species small RNAs (BcsRNAs) into plant cells to suppress host gene expression for infection. We find that naturally occurring, less aggressive B. cinerea strains possess considerably lower copy numbers of LTR retrotransposons and had lost retrotransposon BcsRNA production. Using a transgenic proof-of-concept approach, we reconstitute retrotransposon expression in a BcsRNA-lacking B. cinerea strain, which results in enhanced aggressiveness in a retrotransposon and BcsRNA expression-dependent manner. Moreover, retrotransposon expression in B. cinerea leads to suppression of plant defence-related genes during infection. CONCLUSIONS We propose that retrotransposons are pathogenicity factors that manipulate host plant gene expression by encoding trans-species BcsRNAs. Taken together, the novelty that retrotransposons are pathogenicity factors will have a broad impact on studies of host-microbe interactions and pathology.
Collapse
Affiliation(s)
| | | | | | - Carla Glassl
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
| | - Lucas Wange
- Faculty of Biology, Anthropology & Human Genomics, LMU Munich, Martinsried, Germany
| | - Wolfgang Enard
- Faculty of Biology, Anthropology & Human Genomics, LMU Munich, Martinsried, Germany
| | - Andreas Hauser
- Gene Center, Laboratory for Functional Genome Analysis, LMU Munich, Martinsried, Germany
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany.
| |
Collapse
|
38
|
Recombination-independent recognition of DNA homology for meiotic silencing in Neurospora crassa. Proc Natl Acad Sci U S A 2021; 118:2108664118. [PMID: 34385329 DOI: 10.1073/pnas.2108664118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pairing of homologous chromosomes represents a critical step of meiosis in nearly all sexually reproducing species. In many organisms, pairing involves chromosomes that remain apparently intact. The mechanistic nature of homology recognition at the basis of such pairing is unknown. Using "meiotic silencing by unpaired DNA" (MSUD) as a model process, we demonstrate the existence of a cardinally different approach to DNA homology recognition in meiosis. The main advantage of MSUD over other experimental systems lies in its ability to identify any relatively short DNA fragment lacking a homologous allelic partner. Here, we show that MSUD does not rely on the canonical mechanism of meiotic recombination, yet it is promoted by REC8, a conserved component of the meiotic cohesion complex. We also show that certain patterns of interspersed homology are recognized as pairable during MSUD. Such patterns need to be colinear and must contain short tracts of sequence identity spaced apart at 21 or 22 base pairs. By using these periodicity values as a guiding parameter in all-atom molecular modeling, we discover that homologous DNA molecules can pair by forming quadruplex-based contacts with an interval of 2.5 helical turns. This process requires right-handed plectonemic coiling and additional conformational changes in the intervening double-helical segments. Our results 1) reconcile genetic and biophysical evidence for the existence of direct homologous double-stranded DNA (dsDNA)-dsDNA pairing, 2) identify a role for this process in initiating RNA interference, and 3) suggest that chromosomes can be cross-matched by a precise mechanism that operates on intact dsDNA molecules.
Collapse
|
39
|
Pereira D, Oggenfuss U, McDonald BA, Croll D. Population genomics of transposable element activation in the highly repressive genome of an agricultural pathogen. Microb Genom 2021; 7:000540. [PMID: 34424154 PMCID: PMC8549362 DOI: 10.1099/mgen.0.000540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.
Collapse
Affiliation(s)
- Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Present address: Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, D-24306 Plön, Germany
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
40
|
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, Grognet P, Malagnac F. Loss of EZH2-like or SU(VAR)3-9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin 2021; 14:22. [PMID: 33962663 PMCID: PMC8105982 DOI: 10.1186/s13072-021-00395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.
Collapse
Affiliation(s)
- F Carlier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France
| | - M Li
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - L Maroc
- Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Saclay-CNRS-AgroParisTech, Batiment 400, UFR Des Sciences, 91405, Orsay CEDEX, France
| | - R Debuchy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - C Souaid
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, Aix-Marseille University, 13288, Marseille, France
| | - D Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - P Grognet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - F Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Tobias PA, Schwessinger B, Deng CH, Wu C, Dong C, Sperschneider J, Jones A, Lou Z, Zhang P, Sandhu K, Smith GR, Tibbits J, Chagné D, Park RF. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 (BETHESDA, MD.) 2021; 11:jkaa015. [PMID: 33793741 PMCID: PMC8063080 DOI: 10.1093/g3journal/jkaa015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Austropuccinia psidii, originating in South America, is a globally invasive fungal plant pathogen that causes rust disease on Myrtaceae. Several biotypes are recognized, with the most widely distributed pandemic biotype spreading throughout the Asia-Pacific and Oceania regions over the last decade. Austropuccinia psidii has a broad host range with more than 480 myrtaceous species. Since first detected in Australia in 2010, the pathogen has caused the near extinction of at least three species and negatively affected commercial production of several Myrtaceae. To enable molecular and evolutionary studies into A. psidii pathogenicity, we assembled a highly contiguous genome for the pandemic biotype. With an estimated haploid genome size of just over 1 Gb (gigabases), it is the largest assembled fungal genome to date. The genome has undergone massive expansion via distinct transposable element (TE) bursts. Over 90% of the genome is covered by TEs predominantly belonging to the Gypsy superfamily. These TE bursts have likely been followed by deamination events of methylated cytosines to silence the repetitive elements. This in turn led to the depletion of CpG sites in TEs and a very low overall GC content of 33.8%. Compared to other Pucciniales, the intergenic distances are increased by an order of magnitude indicating a general insertion of TEs between genes. Overall, we show how TEs shaped the genome evolution of A. psidii and provide a greatly needed resource for strategic approaches to combat disease spread.
Collapse
Affiliation(s)
- Peri A Tobias
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Plant & Food Research Australia, SA 5064, Australia
| | - Benjamin Schwessinger
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Chongmei Dong
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2600, Australia
| | - Ashley Jones
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Zhenyan Lou
- Australia Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Peng Zhang
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Karanjeet Sandhu
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| | - Grant R Smith
- The New Zealand Institute for Plant and Food Research Limited, Christchurch 8140, New Zealand
| | - Josquin Tibbits
- Agriculture Victoria Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
| | - David Chagné
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Robert F Park
- Plant Breeding Institute, University of Sydney, Narellan, NSW 2567, Australia
| |
Collapse
|
42
|
TSETA: A Third-Generation Sequencing-Based Computational Tool for Mapping and Visualization of SNPs, Meiotic Recombination Products, and RIP Mutations. Methods Mol Biol 2021; 2234:331-361. [PMID: 33165796 DOI: 10.1007/978-1-0716-1048-0_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
TSETA (Third-generation Sequencing to Enable Tetrad Analysis) is a fungus-centric software pipeline that utilizes chromosome-level sequence assembly for genome-wide and single-nucleotide-resolution mapping of single-nucleotide polymorphisms (SNPs), meiotic recombination products, illegitimate mutations (IMs) and repeat-induced point (RIP) mutations. It utilizes a newly invented algorithm (i.e., BLASTN-guided sectional MAFFT) to perform fast, accurate, and low-cost multiple genome sequence alignments. This new algorithm outcompetes next-generation sequencing (NGS)-based variant-calling approaches for accurate and comprehensive identification of single-nucleotide variants (SNVs) and insertion/deletion mutations (Indels) among the near-complete genome sequences of any two or more intraspecific strains, as well as sequences before and after meiosis, with single-nucleotide precision. TSETA also has a powerful tool for the visualization of the results from the scale of the chromosomal landscape to individual nucleotides. The data output files are user-friendly for researchers and students lacking computational expertise to analyze and reason about data and evidence.
Collapse
|
43
|
The challenges of predicting transposable element activity in hybrids. Curr Genet 2021; 67:567-572. [PMID: 33738571 DOI: 10.1007/s00294-021-01169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements (TEs) are ubiquitous mobile genetic elements that hold both disruptive and adaptive potential for species. It has long been postulated that their activity may be triggered by hybridization, a hypothesis that received mixed support from studies in various species. While host defense mechanisms against TEs are being elucidated, the increasing volume of genomic data and bioinformatic tools specialized in TE detection enable in-depth characterization of TEs at the levels of species and populations. Here, I borrow elements from the genome ecology theory to illustrate how knowledge of the diversity of TEs and host defense mechanisms may help predict the activity of TEs in the face of hybridization, and how current limitations make this task especially challenging.
Collapse
|
44
|
Trichoderma reesei Rad51 tolerates mismatches in hybrid meiosis with diverse genome sequences. Proc Natl Acad Sci U S A 2021; 118:2007192118. [PMID: 33593897 PMCID: PMC7923544 DOI: 10.1073/pnas.2007192118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sexual eukaryotes fall into two groups with respect to their RecA-like recombinases. The first group possesses Rad51 (ubiquitous) and Dmc1 (meiosis-specific), which cooperate to conduct interhomolog recombination in zygotes with high sequence heterogeneity. Interestingly, Dmc1 was lost from the second group of eukaryotic organisms. Here we used the industrial workhorse fungus Trichoderma reesei to address if and how Rad51-only eukaryotes carry out hybrid meiosis. We show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and that TrRad51, like Saccharomyces cerevisiae Dmc1, possesses a better mismatch tolerability than S. cerevisiae Rad51. Our results indicate that the ancestral TrRad51 evolved to acquire Dmc1-like properties by adopting multiple structural variations in the L1 and L2 DNA-binding loops. Most eukaryotes possess two RecA-like recombinases (ubiquitous Rad51 and meiosis-specific Dmc1) to promote interhomolog recombination during meiosis. However, some eukaryotes have lost Dmc1. Given that mammalian and yeast Saccharomyces cerevisiae (Sc) Dmc1 have been shown to stabilize recombination intermediates containing mismatches better than Rad51, we used the Pezizomycotina filamentous fungus Trichoderma reesei to address if and how Rad51-only eukaryotes conduct interhomolog recombination in zygotes with high sequence heterogeneity. We applied multidisciplinary approaches (next- and third-generation sequencing technology, genetics, cytology, bioinformatics, biochemistry, and single-molecule biophysics) to show that T. reesei Rad51 (TrRad51) is indispensable for interhomolog recombination during meiosis and, like ScDmc1, TrRad51 possesses better mismatch tolerance than ScRad51 during homologous recombination. Our results also indicate that the ancestral TrRad51 evolved to acquire ScDmc1-like properties by creating multiple structural variations, including via amino acid residues in the L1 and L2 DNA-binding loops.
Collapse
|
45
|
Nai YS, Huang YC, Yen MR, Chen PY. Diversity of Fungal DNA Methyltransferases and Their Association With DNA Methylation Patterns. Front Microbiol 2021; 11:616922. [PMID: 33552027 PMCID: PMC7862722 DOI: 10.3389/fmicb.2020.616922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.
Collapse
Affiliation(s)
- Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan.,Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Eschenbrenner CJ, Feurtey A, Stukenbrock EH. Population Genomics of Fungal Plant Pathogens and the Analyses of Rapidly Evolving Genome Compartments. Methods Mol Biol 2021; 2090:337-355. [PMID: 31975174 DOI: 10.1007/978-1-0716-0199-0_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome sequencing of fungal pathogens have documented extensive variation in genome structure and composition between species and in many cases between individuals of the same species. This type of genomic variation can be adaptive for pathogens to rapidly evolve new virulence phenotypes. Analyses of genome-wide variation in fungal pathogen genomes rely on high quality assemblies and methods to detect and quantify structural variation. Population genomic studies in fungi have addressed the underlying mechanisms whereby structural variation can be rapidly generated. Transposable elements, high mutation and recombination rates as well as incorrect chromosome segregation during mitosis and meiosis contribute to extensive variation observed in many species. We here summarize key findings in the field of fungal pathogen genomics and we discuss methods to detect and characterize structural variants including an alignment-based pipeline to study variation in population genomic data.
Collapse
Affiliation(s)
- Christoph J Eschenbrenner
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alice Feurtey
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
47
|
St. Leger RJ, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol 2020; 10:200307. [PMID: 33292103 PMCID: PMC7776561 DOI: 10.1098/rsob.200307] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.
Collapse
|
48
|
Dutheil JY, Münch K, Schotanus K, Stukenbrock EH, Kahmann R. The insertion of a mitochondrial selfish element into the nuclear genome and its consequences. Ecol Evol 2020; 10:11117-11132. [PMID: 33144953 PMCID: PMC7593156 DOI: 10.1002/ece3.6749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Homing endonucleases (HE) are enzymes capable of cutting DNA at highly specific target sequences, the repair of the generated double-strand break resulting in the insertion of the HE-encoding gene ("homing" mechanism). HEs are present in all three domains of life and viruses; in eukaryotes, they are mostly found in the genomes of mitochondria and chloroplasts, as well as nuclear ribosomal RNAs. We here report the case of a HE that accidentally integrated into a telomeric region of the nuclear genome of the fungal maize pathogen Ustilago maydis. We show that the gene has a mitochondrial origin, but its original copy is absent from the U. maydis mitochondrial genome, suggesting a subsequent loss or a horizontal transfer from a different species. The telomeric HE underwent mutations in its active site and lost its original start codon. A potential other start codon was retained downstream, but we did not detect any significant transcription of the newly created open reading frame, suggesting that the inserted gene is not functional. Besides, the insertion site is located in a putative RecQ helicase gene, truncating the C-terminal domain of the protein. The truncated helicase is expressed during infection of the host, together with other homologous telomeric helicases. This unusual mutational event altered two genes: The integrated HE gene subsequently lost its homing activity, while its insertion created a truncated version of an existing gene, possibly altering its function. As the insertion is absent in other field isolates, suggesting that it is recent, the U. maydis 521 reference strain offers a snapshot of this singular mutational event.
Collapse
Affiliation(s)
- Julien Y. Dutheil
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of Evolutionary SciencesCNRS – University of Montpellier – IRD – EPHEMontpellierFrance
| | - Karin Münch
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Klaas Schotanus
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Christian Albrechts University of KielKielGermany
- Present address:
Department of Molecular Genetics and Microbiology (MGM)Duke University Medical CenterDurhamNCUSA
| | - Eva H. Stukenbrock
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Christian Albrechts University of KielKielGermany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
49
|
Hénault M, Marsit S, Charron G, Landry CR. The effect of hybridization on transposable element accumulation in an undomesticated fungal species. eLife 2020; 9:e60474. [PMID: 32955438 PMCID: PMC7584455 DOI: 10.7554/elife.60474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can profoundly impact the evolution of genomes and species. A long-standing hypothesis suggests that hybridization could deregulate TEs and trigger their accumulation, although it received mixed support from studies mostly in plants and animals. Here, we tested this hypothesis in fungi using incipient species of the undomesticated yeast Saccharomyces paradoxus. Population genomic data revealed no signature of higher transposition in natural hybrids. As we could not rule out the elimination of past transposition increase signatures by natural selection, we performed a laboratory evolution experiment on a panel of artificial hybrids to measure TE accumulation in the near absence of selection. Changes in TE copy numbers were not predicted by the level of evolutionary divergence between the parents of a hybrid genotype. Rather, they were highly dependent on the individual hybrid genotypes, showing that strong genotype-specific deterministic factors govern TE accumulation in yeast hybrids.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
- Département de biochimie, microbiologie et bioinformatique, Université LavalQuébecCanada
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université LavalQuébecCanada
- Université Laval Big Data Research Center (BDRC_UL)QuébecCanada
- Département de biologie, Université LavalQuébecCanada
| |
Collapse
|
50
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|