1
|
Thacharodi A, Hassan S, Vithlani A, Ahmed T, Kavish S, Geli Blacknell NM, Alqahtani A, Pugazhendhi A. The burden of group A Streptococcus (GAS) infections: The challenge continues in the twenty-first century. iScience 2025; 28:111677. [PMID: 39877071 PMCID: PMC11773489 DOI: 10.1016/j.isci.2024.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Streptococcus pyogenes is a Gram-positive bacterium, also known as Group A Streptococcus (GAS), that has become a significant threat to the healthcare system, infecting more than 18 million people and resulting in more than 500,000 deaths annually worldwide. GAS infection rates decreased gradually during the 20th century in Western countries, largely due to improved living conditions and access to antibiotics. However, post-COVID-19, the situation has led to a steep increase in GAS infection rates in Europe, the United States, Australia, and New Zealand, which triggers a global concern. GAS infections are normally moderate, with symptoms of fever, pharyngitis, and pyoderma; nevertheless, if left untreated or with continued exposure to GAS or with recurring infections it can result in fatal outcomes. GAS produces a variety of virulence factors and exotoxins that can lead to deadly infections such as necrotizing fasciitis, impetigo, cellulitis, pneumonia, empyema, streptococcal toxic shock syndrome, bacteremia, and puerperal sepsis. In addition, post-immune mediated disorders such as post-streptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease contribute to extremely high death rates in developing nations. Despite substantial research on GAS infections, it is still unclear what molecular pathways are responsible for their emergence and how to best manage them. This review thus provides insights into the most recent research on the pathogenesis, virulence, resistance, and host interaction mechanisms of GAS, as well as novel management options to assist scientific communities in combating GAS infections.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi’s Laboratories, Department of Research and Development, Puducherry 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
- Future Leaders Mentoring Fellow, American Society for Microbiology, Washington 20036, USA
| | - Avadh Vithlani
- Senior Resident, Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600119, India
| | | | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Arivalagan Pugazhendhi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
2
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Guerra S, LaRock C. Group A Streptococcus interactions with the host across time and space. Curr Opin Microbiol 2024; 77:102420. [PMID: 38219421 PMCID: PMC10922997 DOI: 10.1016/j.mib.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Group A Streptococcus (GAS) has a fantastically wide tissue tropism in humans, manifesting as different diseases depending on the strain's virulence factor repertoire and the tissue involved. Activation of immune cells and pro-inflammatory signaling has historically been considered an exclusively host-protective response that a pathogen would seek to avoid. However, recent advances in human and animal models suggest that in some tissues, GAS will activate and manipulate specific pro-inflammatory pathways to promote growth, nutrient acquisition, persistence, recurrent infection, competition with other microbial species, dissemination, and transmission. This review discusses molecular interactions between the host and pathogen to summarize how infection varies across tissue and stages of inflammation. A need for inflammation for GAS survival during common, mild infections may drive selection for mechanisms that cause pathological and excess inflammation severe diseases such as toxic shock syndrome, necrotizing fasciitis, and rheumatic heart disease.
Collapse
Affiliation(s)
- Stephanie Guerra
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Martini CL, Silva DNS, Viana AS, Planet PJ, Figueiredo AMS, Ferreira-Carvalho BT. Streptococcus pyogenes Lineage ST62/ emm87: The International Spread of This Potentially Invasive Lineage. Antibiotics (Basel) 2023; 12:1530. [PMID: 37887231 PMCID: PMC10603930 DOI: 10.3390/antibiotics12101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Streptococcus pyogenes is known to be associated with a variety of infections, from pharyngitis to necrotizing fasciitis (flesh-eating disease). S. pyogenes of the ST62/emm87 lineage is recognized as one of the most frequently isolated lineages of invasive infections caused by this bacterium, which may be involved in hospital outbreaks and cluster infections. Despite this, comparative genomic and phylogenomic studies have not yet been carried out for this lineage. Thus, its virulence and antimicrobial susceptibility profiles are mostly unknown, as are the genetic relationships and evolutionary traits involving this lineage. Previously, a strain of S. pyogenes ST62/emm87 (37-97) was characterized in our lab for its ability to generate antibiotic-persistent cells, and therapeutic failure in severe invasive infections caused by this bacterial species is well-reported in the scientific literature. In this work, we analyzed genomic and phylogenomic characteristics and evaluated the virulence and resistance profiles of ST62/emm87 S. pyogenes from Brazil and international sources. Here we show that strains that form this lineage (ST62/emm87) are internationally spread, involved in invasive outbreaks, and share important virulence profiles with the most common emm types of S. pyogenes, such as emm1, emm3, emm12, and emm69, which are associated with most invasive infections caused by this bacterial species in the USA and Europe. Accordingly, the continued increase of ST62/emm87 in severe S. pyogenes diseases should not be underestimated.
Collapse
Affiliation(s)
- Caroline Lopes Martini
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Deborah Nascimento Santos Silva
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| | - Paul Joseph Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Children’s Hospital of Philadelphia, Philadelphia, PA 19106, USA
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
- Programa de Pós-graduação em Patologia, Faculdade de Medicina, Universidade Federal, Fluminense, Niterói 24220-900, RJ, Brazil
| | - Bernadete Teixeira Ferreira-Carvalho
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.M.); (D.N.S.S.); (A.S.V.)
| |
Collapse
|
5
|
Integrin α5β1, as a Receptor of Fibronectin, Binds the FbaA Protein of Group A Streptococcus To Initiate Autophagy during Infection. mBio 2020; 11:mBio.00771-20. [PMID: 32518187 PMCID: PMC7371361 DOI: 10.1128/mbio.00771-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is generally considered a strategy used by the innate immune system to eliminate invasive pathogens through capturing and transferring them to lysosomes. Currently, researchers pay more attention to how virulence factors secreted by GAS regulate the autophagic process. Here, we provide the first evidence that the structural protein FbaA of M1 GAS strain SF370 is a potent inducer of autophagy in epithelial cells. Furthermore, we demonstrate that integrin α5β1 in epithelial cells in vitro and in vivo acts as a receptor to initiate the signaling for inducing autophagy by binding to FbaA of M1 GAS strain SF370 via Fn. Our study reveals the underlying mechanisms by which pathogens induce Fn-integrin α5β1 to trigger autophagy in a conserved pattern in epithelial cells. Group A Streptococcus (GAS), one of the most common extracellular pathogens, has been reported to invade epithelial and endothelial cells. Our results reveal that M1 GAS strain SF370 can be effectively eliminated by respiratory epithelial cells. Emerging evidence indicates that autophagy is an important strategy for nonphagocytes to eliminate intracellular bacteria. Upon pathogen recognition, cell surface receptors can directly trigger autophagy, which is a critical step in controlling infection. However, the mechanisms of how cells sense invading bacteria and use this information specifically to trigger autophagy remain unclear. In this study, we stimulated cells and infected mice with M and FbaA mutants of M1 GAS strain SF370 or with purified M and FbaA proteins (two critical surface structural proteins of GAS), and found that only FbaA protein was involved in autophagy induction. Furthermore, the FbaA protein induced autophagy independent of common pattern recognition receptors (such as Toll-like receptors); rather, it relies on binding to integrin α5β1 expressed on the cell surface, which is mediated by extracellular matrix protein fibronectin (Fn). The FbaA-Fn-integrin α5β1 complex activates Beclin-1 through the mTOR-ULK1–Beclin-1 pathway, which enables the Beclin-1/Vps34 complex to recruit Rab7 and, ultimately, to promote the formation of autophagosomes. By knocking down integrin α5β1, Fn, Atg5, Beclin-1, and ULK1 in Hep2 cells and deleting Atg5 or integrin α5β1 in mice, we reveal a novel role for integrin α5β1 in inducing autophagy. Our study demonstrates that integrin α5β1, through interacting with pathogen components, initiates effective host innate immunity against invading intracellular pathogens.
Collapse
|
6
|
Dynamic Interactions of Group A Streptococcus with Host Macrophages. Methods Mol Biol 2020. [PMID: 32430823 DOI: 10.1007/978-1-0716-0467-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Macrophages play a critical role in Group A Streptococcus (GAS) recognition and the consequent activation of innate immunity and inflammatory responses against the pathogen. In parallel, GAS deploys several strategies for escaping detection and elimination by these efficient phagocytic cells. The events that take place in this GAS-macrophage battleground, the cellular consequences for the pathogen and for the immune cell, and the balance between the magnitude of infection and the efficiency of the host immune response can be investigated with a variety of assays presented in this chapter.
Collapse
|