1
|
Nysten J, Peetermans A, Vaneynde D, Jacobs S, Demuyser L, Van Dijck P. The riboflavin biosynthetic pathway as a novel target for antifungal drugs against Candida species. mBio 2024; 15:e0250224. [PMID: 39404356 PMCID: PMC11559065 DOI: 10.1128/mbio.02502-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 11/14/2024] Open
Abstract
In recent decades, there has been an increase in the occurrence of fungal infections; yet, the arsenal of drugs available to fight invasive infections remains very limited. The development of new antifungal agents is hindered by the restricted number of molecular targets that can be exploited, given the shared eukaryotic nature of fungi and their hosts which often leads to host toxicity. In this paper, we examine the riboflavin biosynthetic pathway as a potential novel drug target. Riboflavin is an essential nutrient for all living organisms. Its biosynthetic pathway does not exist in humans, who obtain riboflavin through their diet. Our findings demonstrate that all enzymes in the pathway are essential for Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Auxotrophic strains, which mimic a drug targeting the biosynthesis pathway, experience rapid mortality in the absence of supplemented riboflavin. Furthermore, RIB1 is essential for virulence in both C. albicans and C. glabrata in a systemic mouse model. The fungal burden of a RIB1 deletion strain is significantly reduced in the kidneys and brain of infected mice, and this reduction becomes more pronounced over time. Nevertheless, auxotrophic cells can still take up external riboflavin when supplemented. We identified Orf19.4337 as the riboflavin importer in C. albicans and named it Rut1. We found that Rut1 only facilitates growth at external riboflavin concentrations that exceed the physiological concentrations in the human body. This suggests that riboflavin uptake is unlikely to serve as a resistance mechanism against drugs targeting the biosynthesis pathway. Interestingly, the uptake system in S. cerevisiae is more effective than in C. albicans and C. glabrata, enabling an auxotrophic S. cerevisiae strain to outcompete an auxotrophic C. albicans strain in lower riboflavin concentrations. IMPORTANCE Candida species are a common cause of invasive fungal infections. Candida albicans, in particular, poses a significant threat to immunocompromised individuals. This opportunistic pathogen typically lives as a commensal on mucosal surfaces of healthy individuals but it can also cause invasive infections associated with high morbidity and mortality. Currently, there are only three major classes of antifungal drugs available to treat these infections. In addition, the efficacy of these antifungal agents is restricted by host toxicity, suboptimal pharmacokinetics, a narrow spectrum of activity, intrinsic resistance of fungal species, such as Candida glabrata, to certain drugs, and the acquisition of resistance over time. Therefore, it is crucial to identify new antifungal drug targets with novel modes of action to add to the limited armamentarium.
Collapse
Affiliation(s)
- Jana Nysten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Arne Peetermans
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Dries Vaneynde
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Liesbeth Demuyser
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Costa AF, da Silva JT, Martins JA, Rocha VL, de Menezes LB, Amaral AC. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz J Microbiol 2024; 55:143-154. [PMID: 37964169 PMCID: PMC10920512 DOI: 10.1007/s42770-023-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Jacqueline Teixeira da Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Juliana Assis Martins
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Viviane Lopes Rocha
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
3
|
Choudhary M, Kumar V, Naik B, Verma A, Saris PEJ, Kumar V, Gupta S. Antifungal metabolites, their novel sources, and targets to combat drug resistance. Front Microbiol 2022; 13:1061603. [PMID: 36532457 PMCID: PMC9755354 DOI: 10.3389/fmicb.2022.1061603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Bindu Naik
- Department of Life Sciences (Food Technology & Nutrition), Graphic Era (Deemed to be University), Dehradun, India
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
4
|
Bose B, Downey T, Ramasubramanian AK, Anastasiu DC. Identification of Distinct Characteristics of Antibiofilm Peptides and Prospection of Diverse Sources for Efficacious Sequences. Front Microbiol 2022; 12:783284. [PMID: 35185814 PMCID: PMC8856603 DOI: 10.3389/fmicb.2021.783284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 01/15/2023] Open
Abstract
A majority of microbial infections are associated with biofilms. Targeting biofilms is considered an effective strategy to limit microbial virulence while minimizing the development of antibiotic resistance. Toward this need, antibiofilm peptides are an attractive arsenal since they are bestowed with properties orthogonal to small molecule drugs. In this work, we developed machine learning models to identify the distinguishing characteristics of known antibiofilm peptides, and to mine peptide databases from diverse habitats to classify new peptides with potential antibiofilm activities. Additionally, we used the reported minimum inhibitory/eradication concentration (MBIC/MBEC) of the antibiofilm peptides to create a regression model on top of the classification model to predict the effectiveness of new antibiofilm peptides. We used a positive dataset containing 242 antibiofilm peptides, and a negative dataset which, unlike previous datasets, contains peptides that are likely to promote biofilm formation. Our model achieved a classification accuracy greater than 98% and harmonic mean of precision-recall (F1) and Matthews correlation coefficient (MCC) scores greater than 0.90; the regression model achieved an MCC score greater than 0.81. We utilized our classification-regression pipeline to evaluate 135,015 peptides from diverse sources for potential antibiofilm activity, and we identified 185 candidates that are likely to be effective against preformed biofilms at micromolar concentrations. Structural analysis of the top 37 hits revealed a larger distribution of helices and coils than sheets, and common functional motifs. Sequence alignment of these hits with known antibiofilm peptides revealed that, while some of the hits showed relatively high sequence similarity with known peptides, some others did not indicate the presence of antibiofilm activity in novel sources or sequences. Further, some of the hits had previously recognized therapeutic properties or host defense traits suggestive of drug repurposing applications. Taken together, this work demonstrates a new in silico approach to predicting antibiofilm efficacy, and identifies promising new candidates for biofilm eradication.
Collapse
Affiliation(s)
- Bipasa Bose
- Department of Biomedical Engineering, San Jose State University, San Jose, CA, United States
| | - Taylor Downey
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, United States
| | - Anand K. Ramasubramanian
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, United States
- *Correspondence: Anand K. Ramasubramanian
| | - David C. Anastasiu
- Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA, United States
- David C. Anastasiu
| |
Collapse
|
5
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
7
|
Marine-Derived Compounds and Prospects for Their Antifungal Application. Molecules 2020; 25:molecules25245856. [PMID: 33322412 PMCID: PMC7763435 DOI: 10.3390/molecules25245856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
The introduction of antifungals in clinical practice has an enormous impact on the provision of medical care, increasing the expectancy and quality of life mainly of immunocompromised patients. However, the emergence of pathogenic fungi that are resistant and multi-resistant to the existing antifungal therapy has culminated in fungal infections that are almost impossible to treat. Therefore, there is an urgent need to discover new strategies. The marine environment has proven to be a promising rich resource for the discovery and development of new antifungal compounds. Thus, this review summarizes more than one hundred marine natural products, or their derivatives, which are categorized according to their sources—sponges, bacteria, fungi, and sea cucumbers—as potential candidates as antifungal agents. In addition, this review focus on recent developments using marine antifungal compounds as new and effective approaches for the treatment of infections caused by resistant and multi-resistant pathogenic fungi and/or biofilm formation; other perspectives on antifungal marine products highlight new mechanisms of action, the combination of antifungal and non-antifungal agents, and the use of nanoparticles and anti-virulence therapy.
Collapse
|
8
|
Lara HH, Lopez-Ribot JL. Inhibition of Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus by Positively Charged Silver Nanoparticles and Functionalized Silicone Elastomers. Pathogens 2020; 9:E784. [PMID: 32992727 PMCID: PMC7600790 DOI: 10.3390/pathogens9100784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Both bacterial and fungal organisms display the ability to form biofilms; however, mixed bacterial/fungal biofilms are particularly difficult to control and eradicate. The opportunistic microbial pathogens Candida albicans and Staphylococcus aureus are among the most frequent causative agents of healthcare-acquired infections, and are often co-isolated forming mixed biofilms, especially from contaminated catheters. These mixed species biofilms display a high level of antibiotic resistance; thus, these infections are challenging to treat resulting in excess morbidity and mortality. In the absence of effective conventional antibiotic treatments, nanotechnology-based approaches represent a promising alternative for the treatment of highly recalcitrant polymicrobial biofilm infections. Our group has previously reported on the activity of pure positively charged silver nanoparticles synthesized by a novel microwave technique against single-species biofilms of C. albicans and S. aureus. Here, we have expanded our observations to demonstrate that that silver nanoparticles display dose-dependent activity against dual-species C. albicans/S. aureus biofilms. Moreover, the same nanoparticles were used to functionalize catheter materials, leading to the effective inhibition of the mixed fungal/bacterial biofilms. Overall, our results indicate the potent activity of silver nanoparticles against these cross-kingdom biofilms. More studies are warranted to examine the ability of functionalized catheters in the prevention of catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
9
|
Kainz K, Bauer MA, Madeo F, Carmona-Gutierrez D. Fungal infections in humans: the silent crisis. MICROBIAL CELL 2020; 7:143-145. [PMID: 32548176 PMCID: PMC7278517 DOI: 10.15698/mic2020.06.718] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Annually, over 150 million severe cases of fungal infections occur worldwide, resulting in approximately 1.7 million deaths per year. Alarmingly, these numbers are continuously on the rise with a number of social and medical developments during the past decades that have abetted the spread of fungal infections. Additionally, the long-term therapeutic application and prophylactic use of antifungal drugs in high-risk patients have promoted the emergence of (multi)drug-resistant fungi, including the extremely virulent strain Candida auris. Hence, fungal infections are already a global threat that is becoming increasingly severe. In this article, we underline the importance of more and effective research to counteract fungal infections and their consequences.
Collapse
Affiliation(s)
- Katharina Kainz
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioHealth Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| | | |
Collapse
|
10
|
Shin DS, Eom YB. Efficacy of zerumbone against dual-species biofilms of Candida albicans and Staphylococcus aureus. Microb Pathog 2019; 137:103768. [DOI: 10.1016/j.micpath.2019.103768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
|
11
|
Shin DS, Eom YB. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can J Microbiol 2019; 65:713-721. [DOI: 10.1139/cjm-2019-0155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Candida albicans biofilm formation is considered an important matter because it can lead to strong resistance to conventional antifungal agents. Hyphae formed by C. albicans can also act as an important virulence factor related to its biofilm. The objective of this study was to determine the effect of zerumbone, a monocyclic sesquiterpene extracted from Zingiber zerumbet (L.) Smith, against C. albicans biofilm formation. Our results suggest that zerumbone possesses antifungal and antibiofilm activity that inhibits biofilm formation and eradicates preformed biofilm. Notably, zerumbone considerably reduced carbohydrate and DNA contents of biofilm matrix. In addition, zerumbone showed antivirulence effects by decreasing the growth of hyphae and inhibiting morphologic changes of C. albicans. Furthermore, zerumbone significantly downregulated expression levels of biofilm-related and hyphae-specific genes, including HWP1 and ALS3. Since zerumbone suppresses biofilm formation and hyphae growth, these results indicate that zerumbone could be used as a potential candidate to treat and prevent C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Da-Seul Shin
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
12
|
Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. Nano-biofilm Arrays as a Novel Universal Platform for Microscale Microbial Culture and High-Throughput Downstream Applications. Curr Med Chem 2019; 26:2529-2535. [PMID: 30621556 DOI: 10.2174/0929867326666190107155953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
Abstract
Biofilms are the predominant mode of microbial growth and it is now fully accepted that a majority of infections in humans are associated with a biofilm etiology. Biofilms are defined as attached and structured microbial communities surrounded by a protective exopolymeric matrix. Importantly, sessile microorganisms growing within a biofilm are highly resistant to antimicrobial agents. Thus, there is an urgent need to develop new and improved anti-biofilm therapies. Unfortunately, most of the current techniques for in-vitro biofilm formation are not compatible with high throughput screening techniques that can speed up discovery of new drugs with anti-biofilm activity. To try to overcome this major impediment, our group has developed a novel technique consisting of micro-scale culture of microbial biofilms on a microarray platform. Using this technique, hundreds to thousands of microbial biofilms, each with a volume of approximately 30-50 nanolitres, can be simultaneously formed on a standard microscope slide. Despite more than three orders of magnitude of miniaturization over conventional biofilms, these nanobiofilms display similar growth, structural and phenotypic properties, including antibiotic drug resistance. These nanobiofilm chips are amenable to automation, drastically reducing assay volume and costs. This technique platform allows for true high-throughput screening in search for new anti-biofilm drugs.
Collapse
Affiliation(s)
| | - Anand K Ramasubramanian
- Department of Biomedical, Chemical and Materials Engineering, San José State University, San José, CA, 95192, United States
| | - José L Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| |
Collapse
|
13
|
Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. mSphere 2019; 4:4/5/e00620-19. [PMID: 31511371 PMCID: PMC6739497 DOI: 10.1128/msphere.00620-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections. The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans. We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo. This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions. IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.
Collapse
|
14
|
Córdova-Alcántara IM, Venegas-Cortés DL, Martínez-Rivera MÁ, Pérez NO, Rodriguez-Tovar AV. Biofilm characterization of Fusarium solani keratitis isolate: increased resistance to antifungals and UV light. J Microbiol 2019; 57:485-497. [DOI: 10.1007/s12275-019-8637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022]
|
15
|
Romo JA, Pierce CG, Esqueda M, Hung CY, Saville SP, Lopez-Ribot JL. In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation. Front Cell Infect Microbiol 2018; 8:227. [PMID: 30042929 PMCID: PMC6048184 DOI: 10.3389/fcimb.2018.00227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
We have previously identified a small molecule compound, N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (9029936), that exerts potent inhibitory activity against filamentation and biofilm formation by the Candida albicans SC5314 strain and represents a lead candidate for the development of anti-virulence approaches against C. albicans infections. Here we present data from a series of experiments to further characterize its in vitro activity and drug-like characteristics. We demonstrate the activity of this compound against a panel of C. albicans clinical isolates, including several displaying resistance to current antifungals; as well as against a set of C. albicans gain of function strains in key transcriptional regulators of antifungal drug resistance. The compound also inhibits filamentation and biofilm formation in the closely related species C. dubliniensis, but not C. glabrata or C. tropicalis. Combinatorial studies reveal the potential of compound 9029936 to be used together with currently available conventional antifungals. Results of serial passage experiments indicate that repeated exposure to this compound does not elicit resistance. Viability staining of C. albicans in the presence of high concentrations of compound 9029936 confirms that the compound is not toxic to fungal cells, and cytological staining using image flow cytometry analysis reveals that treatment with the lead compound affects hyphal length, with additional effects on cell wall and integrity of the membrane system. In vitro pharmacological profiling provides further evidence that the lead compound displays a safe profile, underscoring its excellent “drug-like” characteristics. Altogether these results confirm the potential of this compound to be further developed as a true anti-virulence agent for the treatment of C. albicans infections, including those refractory to treatment with conventional antifungal agents.
Collapse
Affiliation(s)
- Jesus A Romo
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Christopher G Pierce
- Department of Biology, University of the Incarnate Word, San Antonio, TX, United States
| | - Marisol Esqueda
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Chiung-Yu Hung
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Stephen P Saville
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Jose L Lopez-Ribot
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
16
|
Silver C, Rostas S. Comprehensive drug utilization review in neonates: liposomal amphotericin B. J Pharm Pharmacol 2018; 70:328-334. [DOI: 10.1111/jphp.12878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/16/2017] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
This drug utilization evaluation aims to review current evidence on safety and efficacy of using liposomal amphotericin B (LAMB) in newborns with candidiasis, and compare it to the conventional preparation. Conventional amphotericin B deoxycholate (DAMB) is more commonly used in newborns, but dose-limiting adverse effects may compromise its efficacy. This review will examine the advantages and disadvantages of liposomal amphotericin B and define its place in current practice.
Key Findings
The terms ‘AmBisome’ or ‘liposomal amphotericin B’ and ‘neonatal candidiasis’ were entered in both PubMed and Ovid; studies included focused on safety and efficacy of liposomal amphotericin B in newborns with candidiasis, as well as studies comparing the conventional and the liposomal formulations in newborns as monotherapy. Pertinent references obtained from this search were also included. Additionally, pharmacokinetic studies were reviewed to include available data on dosing. Single case reports were not included in the review due to the limited conclusions that can be drawn from such sample sizes and quality of data.
Summary
Although liposomal amphotericin B may be better tolerated and as efficacious as the conventional formulation based on the published literature, the weakness of the studies available on the subject cannot be overlooked. Additional randomized controlled trials are needed to determine the true benefits of this medication.
Collapse
Affiliation(s)
- Chirlie Silver
- MCPHS University and Brigham and Women's Hospital, Boston, MA, USA
| | - Sara Rostas
- Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR. The importance of fungal pathogens and antifungal coatings in medical device infections. Biotechnol Adv 2017; 36:264-280. [PMID: 29199134 DOI: 10.1016/j.biotechadv.2017.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms. However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.
Collapse
Affiliation(s)
- Carla Giles
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Stephanie J Lamont-Friedrich
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Thomas D Michl
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes, Adelaide, SA 5000, Australia; School of Agriculture Food & Wine, The University of Adelaide, Waite Campus, Adelaide, SA 5000, Australia.
| |
Collapse
|
18
|
Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrob Agents Chemother 2017; 61:AAC.01319-17. [PMID: 28893778 DOI: 10.1128/aac.01319-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/20/2022] Open
Abstract
In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations.
Collapse
|
19
|
Abstract
Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Karla J Daniels
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An In Vitro Model for Oral Mixed Biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva. Front Microbiol 2016; 7:686. [PMID: 27242712 PMCID: PMC4864667 DOI: 10.3389/fmicb.2016.00686] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023] Open
Abstract
As a member of the normal human oral microbiota, the fungus Candida albicans is often found in association with Streptococcus gordonii, a member of dental plaque forming bacteria. Evidence suggests that S. gordonii serves as a facilitator of C. albicans adherence to dental tissues, which represents a clinically relevant problem, particularly for immunocompromised individuals that could subsequently develop fungal infections. In this study we describe the development of a relatively simple and economical in vitro model that allows for the growth of mixed bacterial/fungal biofilms in 96-well microtiter plates. We have applied this method to test and compare the growth characteristics of single and dual species biofilms in traditional microbiological media versus a synthetic saliva medium (basal medium mucin, BMM) that more closely resembles physiological conditions within the oral cavity. Results indicated a synergistic effect for the formation of biofilms when both microorganisms were seeded together under all conditions tested. The structural and architectural features of the resulting biofilms were further characterized using scanning electron microscopy and confocal scanning laser microscopy. We also performed drug susceptibility assays against single and mixed species biofilms using commonly used antifungals and antibacterial antibiotics, both in monotherapy and in combination therapy, for a direct comparison of resistance against antimicrobial treatment. As expected, mixed species biofilms displayed higher levels of resistance to antimicrobial treatment at every dose tested in both traditional media and BMM synthetic saliva, as compared to single-species biofilms.
Collapse
Affiliation(s)
- Daniel Montelongo-Jauregui
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Anand Srinivasan
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA; Department of Biomedical Engineering, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Anand K Ramasubramanian
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA; Department of Biomedical Engineering, The University of Texas at San AntonioSan Antonio, TX, USA
| | - Jose L Lopez-Ribot
- Department of Biology, The University of Texas at San AntonioSan Antonio, TX, USA; South Texas Center for Emerging Infectious Diseases, The University of Texas at San AntonioSan Antonio, TX, USA
| |
Collapse
|
21
|
Lin WC, Chang HY, Chen JY. Electrotransfer of the tilapia piscidin 3 and tilapia piscidin 4 genes into skeletal muscle enhances the antibacterial and immunomodulatory functions of Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2016; 50:200-209. [PMID: 26828260 DOI: 10.1016/j.fsi.2016.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4) are antimicrobial peptides recently isolated from Oreochromis niloticus. We previously showed that synthetic TP3 and TP4 possessed antimicrobial activities. Here, we analyzed the bactericidal abilities and immunomodulatory properties of these AMPs following the electroporation of pCMV-GFP-TP3 or pCMV-GFP-TP4 plasmid into tilapia (O. niloticus) muscle and subsequent infection with Vibrio vulnificus or Streptococcus agalactiae. Prior overexpression of TP3 or TP4 in tilapia muscle tissues efficiently reduced bacterial numbers at 24 and 48 h after V. vulnificus infection and reduced bacterial numbers at 24 h after S. agalactiae infection compared to numbers in controls expressing pCMV-GFP (EGFP). Electroporation of pCMV-EGFP-TP3 (TP3) or pCMV-EGFP-TP4 (TP4) significantly increased expression of several immune-related genes in muscle (IL-1β (12 h, TP3), IL-8 (12 h, TP3), TGFβ (3 h, TP4), and IκB (48 h, TP3, TP4)) and decreased the expression of TLR5 (12 h and 24 h, TP3) after V. vulnificus infection. Following S. agalactiae infection, expression of the following genes was significantly decreased in muscle: IL-1β (12 h, TP3), IL-8 (12 h, TP3, TP4), TLR5 (3 h-24 h, TP3, TP4), TGFβ (3 h, TP4; 24 h, TP3, TP4), and IκB (3 h, TP3). These data suggest that TP3 and TP4 exert antimicrobial effects after overexpression in the O. niloticus muscle, and also play important roles in the regulation of immune-related gene expression.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Hsiao-Yun Chang
- Department of Biotechnology, Asia University, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
22
|
Fungal Biofilms: Update on Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:37-47. [DOI: 10.1007/5584_2016_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|