1
|
Yao J, Zhang Z, Pei H, Zhang T, Ruan Y, Liu C, Guo Y, Gu S, Xia Q. Magnetically modified bacteriophage-triggered ATP release activated EXPAR-CRISPR/Cas14a system for visual detection of Burkholderia pseudomallei. Biosens Bioelectron 2024; 257:116334. [PMID: 38678788 DOI: 10.1016/j.bios.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Burkholderia pseudomallei, widely distributed in tropical and subtropical ecosystems, is capable of causing the fatal zoonotic disease melioidosis and exhibiting a global trend of dissemination. Rapid and sensitive detection of B. pseudomallei is essential for environmental monitoring as well as infection control. Here, we developed an innovative biosensor for quantitatively detecting B. pseudomallei relies on ATP released triggered by bacteriophage-induced bacteria lysis. The lytic bacteriophage vB_BpP_HN01, with high specificity, is employed alongside magnetic nanoparticles assembly to create a biological receptor, facilitating the capture and enrichment of viable target bacteria. Following a brief extraction and incubation process, the captured target undergoes rapid lysis to release contents including ATP. The EXPAR-CRISPR cascade reaction provides an efficient signal transduction and dual amplification module that allowing the generated ATP to guide the signal output as an activator, ultimately converting the target bacterial amount into a detectable fluorescence signal. The proposed bacteriophage affinity strategy exhibited superior performance for B. pseudomallei detection with a dynamic range from 10^2 to 10^7 CFU mL-1, and a LOD of 45 CFU mL-1 within 80 min. Moreover, with the output signal compatible across various monitoring methods, this work offers a robust assurance for rapid diagnosis and on-site environmental monitoring of B. pseudomallei.
Collapse
Affiliation(s)
- Juan Yao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, PR China; Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Zhang Zhang
- Department of Neurosurgery, Neurology Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571199, PR China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, PR China
| | - Ting Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, PR China
| | - Yuping Ruan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, PR China
| | - Chenyuan Liu
- Department of Neurosurgery, Neurology Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571199, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China.
| | - Shuo Gu
- Department of Neurosurgery, Neurology Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571199, PR China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, PR China.
| |
Collapse
|
2
|
Bischerour J, Arnaiz O, Zangarelli C, Régnier V, Iehl F, Ropars V, Charbonnier JB, Bétermier M. Uncoupling programmed DNA cleavage and repair scrambles the Paramecium somatic genome. Cell Rep 2024; 43:114001. [PMID: 38547127 DOI: 10.1016/j.celrep.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.
Collapse
Affiliation(s)
- Julien Bischerour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Vinciane Régnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75205 Paris Cedex 13, France
| | - Florence Iehl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Bétermier M, Klobutcher LA, Orias E. Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends. Microbiol Mol Biol Rev 2023; 87:e0018422. [PMID: 38009915 PMCID: PMC10732028 DOI: 10.1128/mmbr.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by de novo telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (Tetrahymena, Paramecium, Euplotes, Stylonychia, and Oxytricha). These organisms differ substantially in the fidelity and precision of their fragmentation systems, as well as in the presence or absence of well-defined sequence elements that direct excision, suggesting that chromosome fragmentation systems have evolved multiple times and/or have been significantly altered during ciliate evolution. We propose a two-stage model for the evolution of the current ciliate systems, with both stages involving repetitive or transposable elements in the genome. The ancestral form of chromosome fragmentation is proposed to have been derived from the ciliate small RNA/chromatin modification process that removes transposons and other repetitive elements from the macronuclear genome during development. The evolution of this ancestral system is suggested to have potentiated its replacement in some ciliate lineages by subsequent fragmentation systems derived from mobile genetic elements.
Collapse
Affiliation(s)
- Mireille Bétermier
- Department of Genome Biology, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Lawrence A. Klobutcher
- Department of Molecular Biology and Biophysics, UCONN Health (University of Connecticut), Farmington, Connecticut, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
4
|
Girasol MJ, Krasilnikova M, Marques CA, Damasceno JD, Lapsley C, Lemgruber L, Burchmore R, Beraldi D, Carruthers R, Briggs EM, McCulloch R. RAD51-mediated R-loop formation acts to repair transcription-associated DNA breaks driving antigenic variation in Trypanosoma brucei. Proc Natl Acad Sci U S A 2023; 120:e2309306120. [PMID: 37988471 PMCID: PMC10691351 DOI: 10.1073/pnas.2309306120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 11/23/2023] Open
Abstract
RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.
Collapse
Affiliation(s)
- Mark John Girasol
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Faculty of the MD-PhD in Molecular Medicine Program, College of Medicine, University of the Philippines Manila, Manila1000, Philippines
| | - Marija Krasilnikova
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Catarina A. Marques
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Jeziel D. Damasceno
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Craig Lapsley
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Leandro Lemgruber
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Richard Burchmore
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Dario Beraldi
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Ross Carruthers
- College of Medical, Veterinary and Life Sciences, School of Cancer Sciences, University of Glasgow, GlasgowG12 0YN, United Kingdom
| | - Emma M. Briggs
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3FL, United Kingdom
| | - Richard McCulloch
- College of Medical, Veterinary and Life Sciences, School of Infection and Immunity, Wellcome Centre for Integrative Parasitology, University of Glasgow, GlasgowG12 8TA, United Kingdom
| |
Collapse
|
5
|
Briggs EM, Marques CA, Reis-Cunha J, Black J, Campbell S, Damasceno J, Bartholomeu D, Crouch K, McCulloch R. Next-Generation Analysis of Trypanosomatid Genome Stability and Instability. Methods Mol Biol 2021; 2116:225-262. [PMID: 32221924 DOI: 10.1007/978-1-0716-0294-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Understanding the rate and patterns of genome variation is becoming ever more amenable to whole-genome analysis through advances in DNA sequencing, which may, at least in some circumstances, have supplanted more localized analyses by cellular and genetic approaches. Whole-genome analyses can utilize both short- and long-read sequence technologies. Here we describe how sequence generated by these approaches has been used in trypanosomatids to examine DNA replication dynamics, the accumulation of modified histone H2A due to genome damage, and evaluation of genome variation, focusing on ploidy change.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Catarina A Marques
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joao Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais-Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Jennifer Black
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Samantha Campbell
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jeziel Damasceno
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Daniella Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais-Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Kathryn Crouch
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Richard McCulloch
- Institute of Infection, Immunity and Inflammation, The Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai IJ, Leu JY. Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 2020; 18:180. [PMID: 33250052 PMCID: PMC7702705 DOI: 10.1186/s12915-020-00912-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. Results We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. Conclusions We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00912-2.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chien-Fu Jeff Liu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Masahiro Fujishima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Isheng Jason Tsai
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan. .,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Lin IT, Yao MC. Selfing mutants link Ku proteins to mating type determination in Tetrahymena. PLoS Biol 2020; 18:e3000756. [PMID: 32745139 PMCID: PMC7398496 DOI: 10.1371/journal.pbio.3000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
Recognition of self and nonself is important for outcrossing organisms, and different mating types establish the barrier against self-mating. In the unicellular ciliate T. thermophila, mating type determination requires complex DNA rearrangements at a single mat locus during conjugation to produce a type-specific gene pair (MTA and MTB) for 1 of 7 possible mating types. Surprisingly, we found that decreased expression of the DNA breakage-repair protein Ku80 at late stages of conjugation generated persistent selfing phenotype in the progeny. DNA analysis revealed multiple mating-type gene pairs as well as a variety of mis-paired, unusually arranged mating-type genes in these selfers that resemble some proposed rearrangement intermediates. They are found also in normal cells during conjugation and are lost after 10 fissions but are retained in Ku mutants. Silencing of TKU80 or TKU70-2 immediately after conjugation also generated selfing phenotype, revealing a hidden DNA rearrangement process beyond conjugation. Mating reactions between the mutant and normal cells suggest a 2-component system for self-nonself-recognition through MTA and MTB genes.
Collapse
Affiliation(s)
- I-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
8
|
Wahab S, Saettone A, Nabeel-Shah S, Dannah N, Fillingham J. Exploring the Histone Acetylation Cycle in the Protozoan Model Tetrahymena thermophila. Front Cell Dev Biol 2020; 8:509. [PMID: 32695779 PMCID: PMC7339932 DOI: 10.3389/fcell.2020.00509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic histone acetylation cycle is composed of three classes of proteins, histone acetyltransferases (HATs) that add acetyl groups to lysine amino acids, bromodomain (BRD) containing proteins that are one of the most characterized of several protein domains that recognize acetyl-lysine (Kac) and effect downstream function, and histone deacetylases (HDACs) that catalyze the reverse reaction. Dysfunction of selected proteins of these three classes is associated with human disease such as cancer. Additionally, the HATs, BRDs, and HDACs of fungi and parasitic protozoa present potential drug targets. Despite their importance, the function and mechanisms of HATs, BRDs, and HDACs and how they relate to chromatin remodeling (CR) remain incompletely understood. Tetrahymena thermophila (Tt) provides a highly tractable single-celled free-living protozoan model for studying histone acetylation, featuring a massively acetylated somatic genome, a property that was exploited in the identification of the first nuclear/type A HAT Gcn5 in the 1990s. Since then, Tetrahymena remains an under-explored model for the molecular analysis of HATs, BRDs, and HDACs. Studies of HATs, BRDs, and HDACs in Tetrahymena have the potential to reveal the function of HATs and BRDs relevant to both fundamental eukaryotic biology and to the study of disease mechanisms in parasitic protozoa.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
9
|
Lin CYG, Chao JL, Tsai HK, Chalker D, Yao MC. Setting boundaries for genome-wide heterochromatic DNA deletions through flanking inverted repeats in Tetrahymena thermophila. Nucleic Acids Res 2019; 47:5181-5192. [PMID: 30918956 PMCID: PMC6547420 DOI: 10.1093/nar/gkz209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/03/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells pack their genomic DNA into euchromatin and heterochromatin. Boundaries between these domains have been shown to be set by boundary elements. In Tetrahymena, heterochromatin domains are targeted for deletion from the somatic nuclei through a sophisticated programmed DNA rearrangement mechanism, resulting in the elimination of 34% of the germline genome in ∼10,000 dispersed segments. Here we showed that most of these deletions occur consistently with very limited variations in their boundaries among inbred lines. We identified several potential flanking regulatory sequences, each associated with a subset of deletions, using a genome-wide motif finding approach. These flanking sequences are inverted repeats with the copies located at nearly identical distances from the opposite ends of the deleted regions, suggesting potential roles in boundary determination. By removing and testing two such inverted repeats in vivo, we found that the ability for boundary maintenance of the associated deletion were lost. Furthermore, we analyzed the deletion boundaries in mutants of a known boundary-determining protein, Lia3p and found that the subset of deletions that are affected by LIA3 knockout contained common features of flanking regulatory sequences. This study suggests a common mechanism for setting deletion boundaries by flanking inverted repeats in Tetrahymena thermophila.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, 10617 Taipei, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University, 10617 Taipei, Taiwan
- Institute of Information Science, Academia Sinica, 11529 Taipei, Taiwan
| | - Douglas Chalker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
10
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
11
|
Zhao X, Xiong J, Mao F, Sheng Y, Chen X, Feng L, Dui W, Yang W, Kapusta A, Feschotte C, Coyne RS, Miao W, Gao S, Liu Y. RNAi-dependent Polycomb repression controls transposable elements in Tetrahymena. Genes Dev 2019; 33:348-364. [PMID: 30808657 PMCID: PMC6411011 DOI: 10.1101/gad.320796.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
Abstract
RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.
Collapse
Affiliation(s)
- Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Robert S Coyne
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Briggs E, Crouch K, Lemgruber L, Lapsley C, McCulloch R. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLoS Genet 2018; 14:e1007729. [PMID: 30543624 PMCID: PMC6292569 DOI: 10.1371/journal.pgen.1007729] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Leandro Lemgruber
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
13
|
Noto T, Mochizuki K. Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 2018; 7:rsob.170172. [PMID: 29021213 PMCID: PMC5666084 DOI: 10.1098/rsob.170172] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
Programmed genome rearrangements in ciliates provide fascinating examples of flexible epigenetic genome regulations and important insights into the interaction between transposable elements (TEs) and host genomes. DNA elimination in Tetrahymena thermophila removes approximately 12 000 internal eliminated sequences (IESs), which correspond to one-third of the genome, when the somatic macronucleus (MAC) differentiates from the germline micronucleus (MIC). More than half of the IESs, many of which show high similarity to TEs, are targeted for elimination in cis by the small RNA-mediated genome comparison of the MIC to the MAC. Other IESs are targeted for elimination in trans by the same small RNAs through repetitive sequences. Furthermore, the small RNA–heterochromatin feedback loop ensures robust DNA elimination. Here, we review an updated picture of the DNA elimination mechanism, discuss the physiological and evolutionary roles of DNA elimination, and outline the key questions that remain unanswered.
Collapse
Affiliation(s)
- Tomoko Noto
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, Montpellier, France
| |
Collapse
|
14
|
de Francisco P, Martín-González A, Turkewitz AP, Gutiérrez JC. Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes. Environ Microbiol 2018; 20:2410-2421. [PMID: 29687579 DOI: 10.1111/1462-2920.14251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Extreme stress situations can induce genetic variations including genome reorganization. In ciliates like Tetrahymena thermophila, the approximately 45-fold ploidy of the somatic macronucleus may enable adaptive responses that depend on genome plasticity. To identify potential genome-level adaptations related to metal toxicity, we isolated three Tetrahymena thermophila strains after an extended adaptation period to extreme metal concentrations (Cd2+ , Cu2+ or Pb2+ ). In the Cd-adapted strain, we found a approximately five-fold copy number increase of three genes located in the same macronuclear chromosome, including two metallothionein genes, MTT1 and MTT3. The apparent amplification of this macronuclear chromosome was reversible and reproducible, depending on the presence of environmental metal. We also analysed three knockout (KO) and/or knockdown (KD) strains for MTT1 and/or MTT5. In the MTT5KD strain, we found at least two new genes arising from paralogous expansion of MTT1, which encode truncated variants of MTT1. The expansion can be explained by a model based on somatic recombination between MTT1 genes on pairs of macronuclear chromosomes. At least two of the new paralogs are transcribed and upregulated in response to Cd2+ . Altogether, we have thus identified two distinct mechanisms, both involving genomic plasticity in the polyploid macronucleus that may represent adaptive responses to metal-related stress.
Collapse
Affiliation(s)
- Patricia de Francisco
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| | - Ana Martín-González
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, Cummings Life Science Center, University of Chicago. 920 East 58th Street, Chicago, IL 60637, USA
| | - Juan Carlos Gutiérrez
- Departamento Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid (UCM). C/. Jose Antonio Nováis, 12. 28040 Madrid, Spain
| |
Collapse
|
15
|
Marques CA, McCulloch R. Conservation and Variation in Strategies for DNA Replication of Kinetoplastid Nuclear Genomes. Curr Genomics 2018; 19:98-109. [PMID: 29491738 PMCID: PMC5814967 DOI: 10.2174/1389202918666170815144627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/19/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction: Understanding how the nuclear genome of kinetoplastid parasites is replicated received experimental stimulus from sequencing of the Leishmania major, Trypanosoma brucei and Trypanosoma cruzi genomes around 10 years ago. Gene annotations suggested key players in DNA replication initiation could not be found in these organisms, despite considerable conservation amongst characterised eukaryotes. Initial studies that indicated trypanosomatids might possess an archaeal-like Origin Recognition Complex (ORC), composed of only a single factor termed ORC1/CDC6, have been supplanted by the more recent identification of an ORC in T. brucei. However, the constituent subunits of T. brucei ORC are highly diverged relative to other eukaryotic ORCs and the activity of the complex appears subject to novel, positive regulation. The availability of whole genome sequences has also allowed the deployment of genome-wide strategies to map DNA replication dynamics, to date in T. brucei and Leishmania. ORC1/CDC6 binding and function in T. brucei displays pronounced overlap with the unconventional organisation of gene expression in the genome. Moreover, mapping of sites of replication initiation suggests pronounced differences in replication dynamics in Leishmania relative to T. brucei. Conclusion: Here we discuss what implications these emerging data may have for parasite and eukaryotic biology of DNA replication.
Collapse
Affiliation(s)
- Catarina A Marques
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, Dow Street, University of Dundee, Dundee, DD1 5EH, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, 120 University Place, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
16
|
Wang J, Gao S, Mostovoy Y, Kang Y, Zagoskin M, Sun Y, Zhang B, White LK, Easton A, Nutman TB, Kwok PY, Hu S, Nielsen MK, Davis RE. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res 2017; 27:2001-2014. [PMID: 29118011 PMCID: PMC5741062 DOI: 10.1101/gr.225730.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
Programmed DNA elimination is a developmentally regulated process leading to the reproducible loss of specific genomic sequences. DNA elimination occurs in unicellular ciliates and a variety of metazoans, including invertebrates and vertebrates. In metazoa, DNA elimination typically occurs in somatic cells during early development, leaving the germline genome intact. Reference genomes for metazoa that undergo DNA elimination are not available. Here, we generated germline and somatic reference genome sequences of the DNA eliminating pig parasitic nematode Ascaris suum and the horse parasite Parascaris univalens. In addition, we carried out in-depth analyses of DNA elimination in the parasitic nematode of humans, Ascaris lumbricoides, and the parasitic nematode of dogs, Toxocara canis. Our analysis of nematode DNA elimination reveals that in all species, repetitive sequences (that differ among the genera) and germline-expressed genes (approximately 1000–2000 or 5%–10% of the genes) are eliminated. Thirty-five percent of these eliminated genes are conserved among these nematodes, defining a core set of eliminated genes that are preferentially expressed during spermatogenesis. Our analysis supports the view that DNA elimination in nematodes silences germline-expressed genes. Over half of the chromosome break sites are conserved between Ascaris and Parascaris, whereas only 10% are conserved in the more divergent T. canis. Analysis of the chromosomal breakage regions suggests a sequence-independent mechanism for DNA breakage followed by telomere healing, with the formation of more accessible chromatin in the break regions prior to DNA elimination. Our genome assemblies and annotations also provide comprehensive resources for analysis of DNA elimination, parasitology research, and comparative nematode genome and epigenome studies.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Shenghan Gao
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yulia Mostovoy
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Yongqiao Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Laura K White
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Alice Easton
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, California 94158, USA
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Martin K Nielsen
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
17
|
Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, Chen X, Dui W, Plemens A, Khadr L, Dhanekula A, Juma M, Dang HQ, Kapler GM, Orias E, Miao W, Liu Y. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res 2017; 45:9481-9502. [PMID: 28934495 PMCID: PMC5766162 DOI: 10.1093/nar/gkx652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.
Collapse
Affiliation(s)
- Lifang Feng
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wen Dui
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amber Plemens
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lara Khadr
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arjune Dhanekula
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mina Juma
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hung Quang Dang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Geoffrey M Kapler
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Tsypin LM, Turkewitz AP. The Co-regulation Data Harvester: automating gene annotation starting from a transcriptome database. SOFTWAREX 2017; 6:165-171. [PMID: 29104906 PMCID: PMC5663188 DOI: 10.1016/j.softx.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.
Collapse
|
19
|
Cheng CY, Young JM, Lin CYG, Chao JL, Malik HS, Yao MC. The piggyBac transposon-derived genes TPB1 and TPB6 mediate essential transposon-like excision during the developmental rearrangement of key genes in Tetrahymena thermophila. Genes Dev 2017; 30:2724-2736. [PMID: 28087716 PMCID: PMC5238731 DOI: 10.1101/gad.290460.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
Abstract
Here, Cheng et al. present data from Tetrahymena that highlight a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin. Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7. Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal inverted motifs that are necessary for excision. Transposon-like excision mediated by TPB1 and TPB6 provides direct evidence for a transposon origin of not only IES excision machinery but also IESs themselves. Our study highlights a division of labor among ciliate piggyBac-derived genes, which carry out mutually exclusive categories of excision events mediated by either transposon-like features or RNA-directed heterochromatin.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Chih-Yi Gabriela Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
20
|
Devlin R, Marques CA, McCulloch R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr Genet 2017; 63:441-449. [PMID: 27822899 PMCID: PMC5422504 DOI: 10.1007/s00294-016-0662-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
All pathogens must survive host immune attack and, amongst the survival strategies that have evolved, antigenic variation is a particularly widespread reaction to thwart adaptive immunity. Though the reactions that underlie antigenic variation are highly varied, recombination by gene conversion is a widespread approach to immune survival in bacterial and eukaryotic pathogens. In the African trypanosome, antigenic variation involves gene conversion-catalysed movement of a huge number of variant surface glycoprotein (VSG) genes into a few telomeric sites for VSG expression, amongst which only a single site is actively transcribed at one time. Genetic evidence indicates VSG gene conversion has co-opted the general genome maintenance reaction of homologous recombination, aligning the reaction strategy with targeted rearrangements found in many organisms. What is less clear is how gene conversion might be initiated within the locality of the VSG expression sites. Here, we discuss three emerging models for VSG switching initiation and ask how these compare with processes for adaptive genome change found in other organisms.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
21
|
Farley BM, Collins K. Transgenerational function of Tetrahymena Piwi protein Twi8p at distinctive noncoding RNA loci. RNA (NEW YORK, N.Y.) 2017; 23:530-545. [PMID: 28053272 PMCID: PMC5340916 DOI: 10.1261/rna.060012.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Transgenerational transmission of genome-regulatory epigenetic information can determine phenotypes in the progeny of sexual reproduction. Sequence specificity of transgenerational regulation derives from small RNAs assembled into Piwi-protein complexes. Known targets of transgenerational regulation are primarily transposons and transposon-derived sequences. Here, we extend the scope of Piwi-mediated transgenerational regulation to include unique noncoding RNA loci. Ciliates such as Tetrahymena have a phenotypically silent germline micronucleus and an expressed somatic macronucleus, which is differentiated anew from a germline genome copy in sexual reproduction. We show that the nuclear-localized Tetrahymena Piwi protein Twi8p shuttles from parental to zygotic macronuclei. Genetic elimination of Twi8p has no phenotype for cells in asexual growth. On the other hand, cells lacking Twi8p arrest in sexual reproduction with zygotic nuclei that retain the germline genome structure, without the DNA elimination and fragmentation required to generate a functional macronucleus. Twi8p-bound small RNAs originate from long-noncoding RNAs with a terminal hairpin, which become detectable in the absence of Twi8p. Curiously, the loci that generate Twi8p-bound small RNAs are essential for asexual cell growth, even though Twi8 RNPs are essential only in sexual reproduction. Our findings suggest the model that Twi8 RNPs act on silent germline chromosomes to permit their conversion to expressed macronuclear chromosomes. Overall this work reveals that a Piwi protein carrying small RNAs from long-noncoding RNA loci has transgenerational function in establishing zygotic nucleus competence for gene expression.
Collapse
MESH Headings
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Chromosomes
- DNA, Protozoan/genetics
- DNA, Protozoan/metabolism
- Gene Rearrangement
- Genome, Protozoan
- Macronucleus/genetics
- Macronucleus/metabolism
- Micronucleus, Germline/genetics
- Micronucleus, Germline/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Reproduction, Asexual/genetics
- Tetrahymena/genetics
- Tetrahymena/growth & development
- Tetrahymena/metabolism
Collapse
Affiliation(s)
- Brian M Farley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3202, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3202, USA
| |
Collapse
|
22
|
In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme Microb Technol 2016; 95:185-191. [DOI: 10.1016/j.enzmictec.2016.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/06/2016] [Accepted: 08/27/2016] [Indexed: 11/23/2022]
|
23
|
Hamilton EP, Kapusta A, Huvos PE, Bidwell SL, Zafar N, Tang H, Hadjithomas M, Krishnakumar V, Badger JH, Caler EV, Russ C, Zeng Q, Fan L, Levin JZ, Shea T, Young SK, Hegarty R, Daza R, Gujja S, Wortman JR, Birren BW, Nusbaum C, Thomas J, Carey CM, Pritham EJ, Feschotte C, Noto T, Mochizuki K, Papazyan R, Taverna SD, Dear PH, Cassidy-Hanley DM, Xiong J, Miao W, Orias E, Coyne RS. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 2016; 5. [PMID: 27892853 PMCID: PMC5182062 DOI: 10.7554/elife.19090] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.
Collapse
Affiliation(s)
- Eileen P Hamilton
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Piroska E Huvos
- Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, United States
| | | | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, United States
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, United States
| | | | | | | | | | - Carsten Russ
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Qiandong Zeng
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Lin Fan
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Joshua Z Levin
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Terrance Shea
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sarah K Young
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ryan Hegarty
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Riza Daza
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Sharvari Gujja
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jennifer R Wortman
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Bruce W Birren
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Chad Nusbaum
- Eli and Edythe L. Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jainy Thomas
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Clayton M Carey
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Tomoko Noto
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sean D Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Paul H Dear
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | | |
Collapse
|
24
|
McCulloch R, Navarro M. The protozoan nucleus. Mol Biochem Parasitol 2016; 209:76-87. [PMID: 27181562 DOI: 10.1016/j.molbiopara.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022]
Abstract
The nucleus is arguably the defining characteristic of eukaryotes, distinguishing their cell organisation from both bacteria and archaea. Though the evolutionary history of the nucleus remains the subject of debate, its emergence differs from several other eukaryotic organelles in that it appears not to have evolved through symbiosis, but by cell membrane elaboration from an archaeal ancestor. Evolution of the nucleus has been accompanied by elaboration of nuclear structures that are intimately linked with most aspects of nuclear genome function, including chromosome organisation, DNA maintenance, replication and segregation, and gene expression controls. Here we discuss the complexity of the nucleus and its substructures in protozoan eukaryotes, with a particular emphasis on divergent aspects in eukaryotic parasites, which shed light on nuclear function throughout eukaryotes and reveal specialisations that underpin pathogen biology.
Collapse
Affiliation(s)
- Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| |
Collapse
|
25
|
Woo TT, Chao JL, Yao MC. Dynamic distributions of long double-stranded RNA in Tetrahymena during nuclear development and genome rearrangements. J Cell Sci 2016; 129:1046-58. [DOI: 10.1242/jcs.178236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA deletion in Tetrahymena, leading to the removal of one-third of the genome from developing somatic nuclei. Using an antibody specific for long double-stranded RNAs (dsRNAs), we determined the dynamic subcellular distributions of these RNAs. Conjugation-specific dsRNAs are found and show sequential appearances in parental germline, parental somatic nuclei and finally in new somatic nuclei of progeny. The dsRNAs in germline nuclei and new somatic nuclei are likely transcribed from the sequences destined for deletion; however, the dsRNAs in parental somatic nuclei are unexpected, and PCR analyses suggest their transcription in this nucleus. Deficiency in RNAi pathway leads to abnormal aggregations of dsRNA in both the parental and new somatic nuclei, whereas accumulation of dsRNAs in the germline nuclei is only seen in the Dicer-like gene mutant. In addition, RNAi mutants display an early loss of dsRNAs from developing somatic nuclei. Thus, long dsRNAs are made in multiple nuclear compartments and some are linked to small RNA production whereas others may participate in their regulations.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|