1
|
Zhu C, Cai S, Liu P, Chen D, Zhou J, Zhuo M, Li S. Dual-plasmid interactions stimulate the accumulation of valencene in Saccharomyces cerevisiae. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:127-134. [PMID: 39416914 PMCID: PMC11446396 DOI: 10.1016/j.biotno.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 10/19/2024]
Abstract
Plasmids are one of the most commonly used basic tools in the construction of microbial cell factories, the use of which individually or in pairs play an important role in the expression of exogenous gene modules. However, little attention has been paid to the interactions of plasmid-plasmid and plasmid-host in the widespread use of the double plasmid system. In this study, we demonstrated that dual-plasmid interactions facilitated to cell growth and product accumulation in Saccharomyces cerevisiae. The strain containing both the expression plasmid pEV (a plasmid carrying the gene encoding valencene synthase) and the assistant plasmid pI (an empty plasmid expressing no extra gene) showed a significant improvement in relative growth rate, biomass and valencene production compared to the strain containing only the pEV plasmid. The transcriptional level analysis revealed an up-regulated expression of specific gene on the expression plasmid pEV stimulated by the assistant plasmid pI in the dual-plasmid interactions. Further investigations demonstrated the essential roles of the promoters of the expression plasmid pEV and the CEN/ARS element of the assistant plasmid pI in the dual-plasmid interactions. Combined with the results of predicted nucleosome occupancy, a response model of interaction based on the key T(n)C and CEN/ARS element was established. Moreover, the transformation order of the two plasmids significantly affected the response effect, implying the dominance of plasmid pI in the dual-plasmid interactions. Our finding first demonstrated that dual plasmids regulate the gene expression through spatial interactions at DNA sequences level, which provides a new perspective for the development of microbial cell factories in future.
Collapse
Affiliation(s)
- Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Peiling Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Dongying Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jingtao Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wu P, Zhou J, Yu Y, Lu H. Characterization of essential elements for improved episomal expressions in
Kluyveromyces marxianus. Biotechnol J 2022; 17:e2100382. [DOI: 10.1002/biot.202100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/16/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Pingping Wu
- State Key Laboratory of Genetic Engineering School of Life Sciences Fudan University Shanghai China
- Shanghai Engineering Research Center of Industrial Microorganisms Shanghai China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering School of Life Sciences Fudan University Shanghai China
- Shanghai Engineering Research Center of Industrial Microorganisms Shanghai China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering School of Life Sciences Fudan University Shanghai China
- Shanghai Engineering Research Center of Industrial Microorganisms Shanghai China
- National Technology Innovation Center of Synthetic Biology Tianjin China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering School of Life Sciences Fudan University Shanghai China
- Shanghai Engineering Research Center of Industrial Microorganisms Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology Shanghai China
- National Technology Innovation Center of Synthetic Biology Tianjin China
| |
Collapse
|
3
|
Robinson D, Place M, Hose J, Jochem A, Gasch AP. Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. eLife 2021; 10:e70564. [PMID: 34338637 PMCID: PMC8352584 DOI: 10.7554/elife.70564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.
Collapse
Affiliation(s)
- DeElegant Robinson
- Microbiology Doctoral Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
| | - James Hose
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Adam Jochem
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-MadisonMadisonUnited States
- Center for Genomic Science Innovation, University of Wisconsin-MadisonMadisonUnited States
- Department of Medical Genetics, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
4
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
5
|
Jalal D, Chalissery J, Hassan AH. Irc20 Regulates the Yeast Endogenous 2-μm Plasmid Levels by Controlling Flp1. Front Mol Biosci 2020; 7:221. [PMID: 33330615 PMCID: PMC7710549 DOI: 10.3389/fmolb.2020.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022] Open
Abstract
The endogenous yeast 2-μm plasmid while innocuous to the host, needs to be properly regulated to avoid a toxic increase in copy number. The plasmid copy number control system is under the control of the plasmid encoded recombinase, Flp1. In case of a drop in 2-μm plasmid levels due to rare plasmid mis-segregation events, the Flp1 recombinase together with the cell’s homologous recombination machinery, produce multiple copies of the 2-μm plasmid that are spooled during DNA replication. The 2-μm plasmid copy number is tightly regulated by controlled expression of Flp1 as well as its ubiquitin and SUMO modification. Here, we identify a novel regulator of the 2-μm plasmid, the ATPase, ubiquitin ligase, Irc20. Irc20 was initially identified as a homologous recombination regulator, and here we uncover a new role for Irc20 in maintaining the 2-μm plasmid copy number and segregation through regulating Flp1 protein levels in the cell.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
6
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Wang J, Liu Y, Liu Y, Du K, Xu S, Wang Y, Krupovic M, Chen X. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res 2019; 46:2521-2536. [PMID: 29361162 PMCID: PMC5861418 DOI: 10.1093/nar/gky005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genomes of halophilic archaea typically contain multiple loci of integrated mobile genetic elements (MGEs). Despite the abundance of these elements, however, mechanisms underlying their site-specific integration and excision have not been investigated. Here, we identified and characterized a novel recombination system encoded by the temperate pleolipovirus SNJ2, which infects haloarchaeon Natrinema sp. J7-1. SNJ2 genome is inserted into the tRNAMet gene and flanked by 14 bp direct repeats corresponding to attachment core sites. We showed that SNJ2 encodes an integrase (IntSNJ2) that excises the proviral genome from its host cell chromosome, but requires two small accessory proteins, Orf2 and Orf3, for integration. These proteins were co-transcribed with IntSNJ2 to form an operon. Homology searches showed that IntSNJ2-type integrases are widespread in haloarchaeal genomes and are associated with various integrated MGEs. Importantly, we confirmed that SNJ2-like recombination systems are encoded by haloarchaea from three different genera and are critical for integration and excision. Finally, phylogenetic analysis suggested that IntSNJ2-type recombinases belong to a novel family of archaeal integrases distinct from previously characterized recombinases, including those from the archaeal SSV- and pNOB8-type families.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingchun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Kaixin Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mart Krupovic
- Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Ma CH, Su BY, Maciaszek A, Fan HF, Guga P, Jayaram M. A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification. PLoS Genet 2019; 15:e1008193. [PMID: 31242181 PMCID: PMC6594588 DOI: 10.1371/journal.pgen.1008193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms for highly efficient chromosome-associated equal segregation, and for maintenance of steady state copy number, are at the heart of the evolutionary success of the 2-micron plasmid as a stable multi-copy extra-chromosomal selfish DNA element present in the yeast nucleus. The Flp site-specific recombination system housed by the plasmid, which is central to plasmid copy number maintenance, is regulated at multiple levels. Transcription of the FLP gene is fine-tuned by the repressor function of the plasmid-coded partitioning proteins Rep1 and Rep2 and their antagonist Raf1, which is also plasmid-coded. In addition, the Flp protein is regulated by the host's post-translational modification machinery. Utilizing a Flp-SUMO fusion protein, which functionally mimics naturally sumoylated Flp, we demonstrate that the modification signals ubiquitination of Flp, followed by its proteasome-mediated degradation. Furthermore, reduced binding affinity and cooperativity of the modified Flp decrease its association with the plasmid FRT (Flp recombination target) sites, and/or increase its dissociation from them. The resulting attenuation of strand cleavage and recombination events safeguards against runaway increase in plasmid copy number, which is deleterious to the host-and indirectly-to the plasmid. These results have broader relevance to potential mechanisms by which selfish genomes minimize fitness conflicts with host genomes by holding in check the extra genetic load they pose.
Collapse
Affiliation(s)
- Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Anna Maciaszek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Lodz, Poland
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
9
|
Hohnholz R, Achstetter T. Recombinant multicopy plasmids in yeast – interactions with the endogenous 2 μm. FEMS Yeast Res 2019; 19:5425451. [DOI: 10.1093/femsyr/foz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
Flp-mediated site specific intramolecular recombination in Saccharomyces cerevisiae is considered responsible for amplification of the endogenous 2 μm plasmid. For YEp-type vectors, a similar mechanism can be imagined by which such plasmids achieve high copy numbers, a trait desired for many research applications and necessary for industrial production. We have cultivated yeast carrying one of six isomeric YEp-type model expression plasmids under two different conditions and back transformed the shuttle vectors into Escherichia coli. Our analysis of 586 ampR clones represents a high-resolution snapshot of plasmid forms present in the transformed yeast cells with a detection limit of structural changes of <2%. Altered forms summed up to about 11%, constituting likely a lower limit. We have observed two categories of recombination events. One is Flp based, with products of intermolecular recombination with the 2 μm, likely intermediates that are prerequisites for YEp-type plasmid amplification. The other type is based on Flp-independent homologous recombination leading to oligomerization of such plasmids also in a 2μm-free [cir°] strain, i.e. in the absence of Flp. Beyond the general maintenance and its functional sequences, only the gene of interest and its expression might have an impact on the physiology of the host.
Collapse
Affiliation(s)
- Ruben Hohnholz
- Department of Industrial Microbiology, City University of Applied Sciences Bremen, Neustadtswall 30, D-28199 Bremen, Germany
| | - Tilman Achstetter
- Department of Industrial Microbiology, City University of Applied Sciences Bremen, Neustadtswall 30, D-28199 Bremen, Germany
| |
Collapse
|
10
|
Tutaj H, Pogoda E, Tomala K, Korona R. Gene overexpression screen for chromosome instability in yeast primarily identifies cell cycle progression genes. Curr Genet 2018; 65:483-492. [PMID: 30244280 PMCID: PMC6420891 DOI: 10.1007/s00294-018-0885-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Loss of heterozygosity (LOH) in a vegetatively growing diploid cell signals irregularity of mitosis. Therefore, assays of LOH serve to discover pathways critical for proper replication and segregation of chromosomes. We screened for enhanced LOH in a whole-genome collection of diploid yeast strains in which a single gene was strongly overexpressed. We found 39 overexpression strains with substantially increased LOH caused either by recombination or by chromosome instability. Most of them, 32 in total, belonged to the category of "cell division", a broadly defined biological process. Of those, only one, TOP3, coded for an enzyme that uses DNA as a substrate. The rest related to establishment and maintenance of cell polarity, chromosome segregation, and cell cycle checkpoints. Former studies, in which gene deletions were used, showed that an absence of a protein participating in the DNA processing machinery is a potent stimulator of genome instability. As our results suggest, overexpression of such proteins is not comparably damaging as the absence of them. It may mean that the harmful effect of overexpression is more likely to occur in more complex and multistage processes, such as chromosome segregation. We also report a side finding, resulting from the fact that we worked with the yeast strains bearing a 2-micron plasmid. We noted that intense transcription from such a plasmid led to an enhanced rate of an entire chromosome loss (as opposed to LOH produced by recombination). This observation may support models linking segregation of 2-micron plasmids to segregation of chromosomes.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Elzbieta Pogoda
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
11
|
Rouzeau C, Dagkesamanskaya A, Langer K, Bibette J, Baudry J, Pompon D, Anton-Leberre V. Adaptive response of yeast cells to triggered toxicity of phosphoribulokinase. Res Microbiol 2018; 169:335-342. [PMID: 29964131 DOI: 10.1016/j.resmic.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/26/2022]
Abstract
Adjustment of plasmid copy number resulting from the balance between positive and negative impacts of borne synthetic genes, plays a critical role in the global efficiency of multistep metabolic engineering. Differential expression of co-expressed engineered genes is frequently observed depending on growth phases, metabolic status and triggered adjustments of plasmid copy numbers, constituting a dynamic process contributing to minimize global engineering burden. A yeast model involving plasmid based expression of phosphoribulokinase (PRKp), a key enzyme for the reconstruction of synthetic Calvin cycle, was designed to gain further insights into such a mechanism. A conditional PRK expression cassette was cloned either onto a low (ARS-CEN based) or a high (2-micron origin based) copy number plasmid using complementation of a trp1 genomic mutation as constant positive selection. Evolution of plasmid copy numbers, PRKp expressions, and cell growth rates were dynamically monitored following gene de-repression through external doxycycline concentration shifts. In the absence of RubisCO encoding gene permitting metabolic recycling, PRKp expression that led to depletion of ribulose phosphate, a critical metabolite for aromatic amino-acids biosynthesis, and accumulation of the dead-end diphosphate product contribute to toxicity. Triggered copy number adjustment was found to be a dynamic process depending both on plasmid types and levels of PRK induction. With the ARS-CEN plasmid, cell growth was abruptly affected only when level PRKp expression exceeded a threshold value. In contrast, a proportional relationship was observed with the 2-micron plasmid consistent with large copy number adjustments. Micro-compartment partitioning of bulk cultures by embedding individual cells into inverse culture medium/oil droplets, revealed the presence of slow and fast growing subpopulations that differ in relative proportions for low and high copy number plasmids.
Collapse
Affiliation(s)
| | | | - Krzysztof Langer
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés, From the Institute of Chemistry, Biology and Innovation (CBI), ESPCI ParisTech, CNRS, UMR 8231, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| | - Denis Pompon
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | |
Collapse
|
12
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
13
|
The Ubiquitin Ligase (E3) Psh1p Is Required for Proper Segregation of both Centromeric and Two-Micron Plasmids in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:3731-3743. [PMID: 28928274 PMCID: PMC5677152 DOI: 10.1534/g3.117.300227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein degradation by the ubiquitin-proteasome system is essential to many processes. We sought to assess its involvement in the turnover of mitochondrial proteins in Saccharomyces cerevisiae. We find that deletion of a specific ubiquitin ligase (E3), Psh1p, increases the abundance of a temperature-sensitive mitochondrial protein, mia40-4pHA, when it is expressed from a centromeric plasmid. Deletion of Psh1p unexpectedly elevates the levels of other proteins expressed from centromeric plasmids. Loss of Psh1p does not increase the rate of turnover of mia40-4pHA, affect total protein synthesis, or increase the protein levels of chromosomal genes. Instead, psh1Δ appears to increase the incidence of missegregation of centromeric plasmids relative to their normal 1:1 segregation. After generations of growth with selection for the plasmid, ongoing missegregation would lead to elevated plasmid DNA, mRNA, and protein, all of which we observe in psh1Δ cells. The only known substrate of Psh1p is the centromeric histone H3 variant Cse4p, which is targeted for proteasomal degradation after ubiquitination by Psh1p. However, Cse4p overexpression alone does not phenocopy psh1Δ in increasing plasmid DNA and protein levels. Instead, elevation of Cse4p leads to an apparent increase in 1:0 plasmid segregation events. Further, 2 μm high-copy yeast plasmids also missegregate in psh1Δ, but not when Cse4p alone is overexpressed. These findings demonstrate that Psh1p is required for the faithful inheritance of both centromeric and 2 μm plasmids. Moreover, the effects that loss of Psh1p has on plasmid segregation cannot be accounted for by increased levels of Cse4p.
Collapse
|
14
|
Sanchez JC, Kwan EX, Pohl TJ, Amemiya HM, Raghuraman MK, Brewer BJ. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast. PLoS Genet 2017; 13:e1007041. [PMID: 29036220 PMCID: PMC5658192 DOI: 10.1371/journal.pgen.1007041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph C. Sanchez
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Elizabeth X. Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Thomas J. Pohl
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Haley M. Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Bonita J. Brewer
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Genome engineering in Bacillus anthracis using tyrosine site-specific recombinases. PLoS One 2017; 12:e0183346. [PMID: 28829806 PMCID: PMC5567495 DOI: 10.1371/journal.pone.0183346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Tyrosine site-specific recombinases (T-SSR) are polynucleotidyltransferases that catalyze cutting and joining reactions between short specific DNA sequences. We developed three systems for performing genetic modifications in Bacillus anthracis that use T-SSR and their cognate target sequences, namely Escherichia coli bacteriophage P1 Cre-loxP, Saccharomyces cerevisiae Flp-FRT, and a newly discovered IntXO-PSL system from B. anthracis plasmid pXO1. All three tyrosine recombinase systems were used for creation of a B. anthracis sporulation-deficient, plasmid-free strain deleted for ten proteases which had been identified by proteomic analysis as being present in the B. anthracis secretome. This strain was used successfully for production of various recombinant proteins, including several that are candidates for inclusion in improved anthrax vaccines. These genetic tools developed for DNA manipulation in B. anthracis were also used for construction of strains having chromosomal insertions of 1, 2, or 3 adjacent atxA genes. AtxA is a B. anthracis global transcriptional regulator required for the response of B. anthracis virulence factor genes to bicarbonate. We found a positive correlation between the atxA copy number and the expression level of the pagA gene encoding B. anthracis protective antigen, when strains were grown in a carbon dioxide atmosphere. These results demonstrate that the three T-SSR systems described here provide effective tools for B. anthracis genome editing. These T-SSR systems may also be applicable to other prokaryotes and to eukaryotes.
Collapse
|
16
|
Cao M, Gao M, Lopez-Garcia CL, Wu Y, Seetharam AS, Severin AJ, Shao Z. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering. ACS Synth Biol 2017; 6:1545-1553. [PMID: 28391682 DOI: 10.1021/acssynbio.7b00046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Meirong Gao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Carmen Lorena Lopez-Garcia
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Yutong Wu
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Arun Somwarpet Seetharam
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Andrew Josef Severin
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Zengyi Shao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
17
|
Abstract
One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We present a model in which genomic inversions are catalyzed by the integrase enzyme encoded by a family of mobile genetic elements. We characterized the integrase from Thermococcus nautili plasmid pTN3 and showed that besides canonical site-specific reactions, it catalyzes low sequence specificity recombination reactions with the same outcome as homologous recombination events on DNA segments as short as 104bp both in vitro and in vivo, in contrast to other known tyrosine recombinases. Through serial culturing, we showed that the integrase-mediated divergence of T. nautili strains occurs at an astonishing rate, with at least four large-scale genomic inversions appearing within 60 generations. Our results and the ubiquitous distribution of pTN3-like integrated elements suggest that a major mechanism of evolution of an entire order of Archaea results from the activity of a selfish mobile genetic element. Mobile elements (MEs) such as viruses, plasmids and transposons infect most living organisms and often encode recombinases promoting their insertion into cellular genomes. These insertions alter the genome of their host according to two main mechanisms. First, MEs provide new functions to the cell by integrating their own genetic information into the DNA of the host, at one or more locations. Secondly, cellular homologous recombination will act upon multiple integrated copies and produce a variety of large-scale chromosomal rearrangements. If such modifications are advantageous, they will spread into the population by natural selection. Typically, enzymes involved in cellular homologous recombination and the integration of MEs are distinct. We describe here a novel plasmid-encoded archaeal integrase which in addition to site-specific recombination can catalyze low sequence specificity recombination reactions akin to homologous recombination.
Collapse
|
18
|
Rizvi SMA, Prajapati HK, Ghosh SK. The 2 micron plasmid: a selfish genetic element with an optimized survival strategy within Saccharomyces cerevisiae. Curr Genet 2017; 64:25-42. [PMID: 28597305 DOI: 10.1007/s00294-017-0719-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/27/2022]
Abstract
Since its discovery in the early 70s, the 2 micron plasmid of Saccharomyces cerevisiae continues to intrigue researchers with its high protein-coding capacity and a selfish nature yet high stability, earning it the title of a 'miniaturized selfish genetic element'. It codes for four proteins (Rep1, Rep2, Raf1, and Flp) vital for its own survival and recruits several host factors (RSC2, Cohesin, Cse4, Kip1, Bik1, Bim1, and microtubules) for its faithful segregation during cell division. The plasmid maintains a high-copy number with the help of Flp-mediated recombination. The plasmids organize in the form of clusters that hitch-hike the host chromosomes presumably with the help of the plasmid-encoded Rep proteins and host factors such as microtubules, Kip1 motor, and microtubule-associated proteins Bik1 and Bim1. Although there is no known yeast cell phenotype associated with the 2 micron plasmid, excessive copies of the plasmid are lethal for the cells, warranting a tight control over the plasmid copy number. This control is achieved through a combination of feedback loops involving the 2 micron encoded proteins. Thus, faithful segregation and a concomitant tightly controlled plasmid copy number ensure an optimized benign parasitism of the 2 micron plasmid within budding yeast.
Collapse
Affiliation(s)
- Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu Kumar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
19
|
Rowley PA. The frenemies within: viruses, retrotransposons and plasmids that naturally infect Saccharomyces yeasts. Yeast 2017; 34:279-292. [PMID: 28387035 DOI: 10.1002/yea.3234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/07/2022] Open
Abstract
Viruses are a major focus of current research efforts because of their detrimental impact on humanity and their ubiquity within the environment. Bacteriophages have long been used to study host-virus interactions within microbes, but it is often forgotten that the single-celled eukaryote Saccharomyces cerevisiae and related species are infected with double-stranded RNA viruses, single-stranded RNA viruses, LTR-retrotransposons and double-stranded DNA plasmids. These intracellular nucleic acid elements have some similarities to higher eukaryotic viruses, i.e. yeast retrotransposons have an analogous lifecycle to retroviruses, the particle structure of yeast totiviruses resembles the capsid of reoviruses and segregation of yeast plasmids is analogous to segregation strategies used by viral episomes. The powerful experimental tools available to study the genetics, cell biology and evolution of S. cerevisiae are well suited to further our understanding of how cellular processes are hijacked by eukaryotic viruses, retrotransposons and plasmids. This article has been written to briefly introduce viruses, retrotransposons and plasmids that infect Saccharomyces yeasts, emphasize some important cellular proteins and machineries with which they interact, and suggest the evolutionary consequences of these interactions. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, The University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
20
|
Liu YT, Chang KM, Ma CH, Jayaram M. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome. Nucleic Acids Res 2016; 44:8302-23. [PMID: 27492289 PMCID: PMC5041486 DOI: 10.1093/nar/gkw694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Keng-Ming Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|