1
|
Lücking D, Alarcón-Schumacher T, Erdmann S. Distribution and Implications of Haloarchaeal Plasmids Disseminated in Self-Encoded Plasmid Vesicles. Microorganisms 2023; 12:5. [PMID: 38276173 PMCID: PMC10818511 DOI: 10.3390/microorganisms12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Even though viruses and plasmids are both drivers of horizontal gene transfer, they differ fundamentally in their mode of transfer. Virus genomes are enclosed in virus capsids and are not dependent on cell-to-cell contacts for their dissemination. In contrast, the transfer of plasmids most often requires physical contact between cells. However, plasmid pR1SE of Halorubrum lacusprofundi is disseminated between cells, independent of cell-cell contacts, in specialized membrane vesicles that contain plasmid proteins. In this study, we searched for pR1SE-like elements in public databases and a metagenomics dataset from Australian salt lakes and identified 40 additional pR1SE-like elements in hypersaline environments worldwide. Herein, these elements are named apHPVs (archaeal plasmids of haloarchaea potentially transferred in plasmid vesicles). They share two sets of closely related proteins with conserved synteny, strongly indicating an organization into different functional clusters. We find that apHPVs, besides transferring themselves, have the potential to transfer large fragments of DNA between host cells, including virus defense systems. Most interestingly, apHPVs likely play an important role in the evolution of viruses and plasmids in haloarchaea, as they appear to recombine with both of them. This further supports the idea that plasmids and viruses are not distinct but closely related mobile genetic elements.
Collapse
Affiliation(s)
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
2
|
Song Y, Zhang Z, Fang Y, Sun M, Jiang Y, Li D, Feng Y. Three-dimensional graphene aerogel mitigated the toxic impact of chloramphenicol wastewater on microorganisms in an EGSB reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166796. [PMID: 37666346 DOI: 10.1016/j.scitotenv.2023.166796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Muchen Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yuhuan Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Dongyi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
3
|
Zhao F, Saleem M, Xie Z, Wei X, He T, He G. Sensitive or tolerant functional microorganisms under cadmium stress: suggesting potential specific interaction network characteristics in the rhizosphere system of karst potato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55932-55947. [PMID: 36913018 DOI: 10.1007/s11356-023-26115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal cadmium (Cd) pollution in Chinese karst soils threatens food security, and microorganisms play an important role in regulating the migration and transformation of Cd in the soil-plant system. Nevertheless, the interaction characteristics between key microbial communities and environmental factors in response to Cd stress in specific crop environmental systems need to be explored. In this study, the soil (ferralsols)-microbe-crop (potato) system was taken as the object to explore the potato rhizosphere microbiome, using toxicology and molecular biology approaches, to explore the potato rhizosphere soil properties, microbial stress characteristics, and important microbial taxa under Cd stress. We hypothesized that different members of fungal and bacterial microbiome would regulate the resilience of potato rhizosphere and plants to Cd stress in the soil environment. Meanwhile, individual taxa will have different roles in the contaminated rhizosphere ecosystem. We found that soil pH was the main environmental factor affecting fungal community structure; urea-decomposing and nitrate-reducing functional bacteria as well as endosymbiotic and saprophytic functional fungi gradually decreased. In particular, Basidiomycota may play a key role in preventing the migration of Cd from the soil to plants (potato). These findings provide important candidates for screening the cascade of Cd inhibition (detoxification/regulation) from soil to microorganisms to plants. Our work provides an important foundation and research insights for the application of microbial remediation technology in the karst cadmium-contaminated farmland.
Collapse
Affiliation(s)
- Fulin Zhao
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhao Xie
- Soil and Fertilizer Station of Guizhou Province, Guiyang, People's Republic of China
| | - Xiaoliao Wei
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China
- Institute of New Rural Development of Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
4
|
Huang Y, Wang G, Zhang Q, Chen Z, Li C, Wang W, Zhang X, Wang X, Zhang D, Cui P, Ma Z. Effects of milk replacer feeding level on growth performance, rumen development and the ruminal bacterial community in lambs. Front Microbiol 2023; 13:1069964. [PMID: 36704552 PMCID: PMC9871810 DOI: 10.3389/fmicb.2022.1069964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Feeding with a suitable level of milk replacer (MR) can improve the survival rate and stimulate the growth potential of early lambs. However, feeding excessive MR might be detrimental to rumen development and microbial colonization. Herein, we investigated the effects of feeding different levels of MR on rumen digestive function and ruminal microorganisms. Fourteen healthy male Hu lambs with similar birth weights and detailed pedigree records were divided into two groups to receive low (2% of average body weight per day) and high (4% of average body weight per day) levels of MR. We analyzed the effects of the MR feeding level on growth performance, fiber degradation rates, rumen fermentation parameters, enzyme activities and rumen histomorphology. We found that feeding with a high level of MR improved the average daily gain of early lambs, but decreased the starter intake, rumen weight and papillae length. We also analyzed the effects of the MR feeding level on the rumen microbiota using 16S-rRNA amplicon sequencing data. The results showed that high a MR feeding level increased the rumen microbial diversity but decreased the abundance of many carbohydrate degrading bacteria. Several bacterial genera with significant differences correlated positively with rumen cellulase activity and the acid detergent fiber degradation rate. Our results suggested that a high level of MR could improve the growth performance of early lambs in the short term; however, in the long term, it would be detrimental to rumen development and have adverse effects on the adaptation process of the microbiota to solid feed.
Collapse
Affiliation(s)
- Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,*Correspondence: Chong Li, ✉
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Deyin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Villain P, Catchpole R, Forterre P, Oberto J, da Cunha V, Basta T. Expanded dataset reveals the emergence and evolution of DNA gyrase in Archaea. Mol Biol Evol 2022; 39:6639447. [PMID: 35811376 PMCID: PMC9348778 DOI: 10.1093/molbev/msac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase is a type II topoisomerase with the unique capacity to introduce negative supercoiling in DNA. In bacteria, DNA gyrase has an essential role in the homeostatic regulation of supercoiling. While ubiquitous in bacteria, DNA gyrase was previously reported to have a patchy distribution in Archaea but its emergent function and evolutionary history in this domain of life remains elusive. In this study, we used phylogenomic approaches and an up-to date sequence dataset to establish global and archaea-specific phylogenies of DNA gyrases. The most parsimonious evolutionary scenario infers that DNA gyrase was introduced into the lineage leading to Euryarchaeal group II via a single horizontal gene transfer from a bacterial donor which we identified as an ancestor of Gracilicutes and/or Terrabacteria. The archaea-focused trees indicate that DNA gyrase spread from Euryarchaeal group II to some DPANN and Asgard lineages via rare horizontal gene transfers. The analysis of successful recent transfers suggests a requirement for syntropic or symbiotic/parasitic relationship between donor and recipient organisms. We further show that the ubiquitous archaeal Topoisomerase VI may have co-evolved with DNA gyrase to allow the division of labor in the management of topological constraints. Collectively, our study reveals the evolutionary history of DNA gyrase in Archaea and provides testable hypotheses to understand the prerequisites for successful establishment of DNA gyrase in a naive archaeon and the associated adaptations in the management of topological constraints.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Badel C, Erauso G, Gomez AL, Catchpole R, Gonnet M, Oberto J, Forterre P, Da Cunha V. The global distribution and evolutionary history of the pT26-2 archaeal plasmid family. Environ Microbiol 2019; 21:4685-4705. [PMID: 31503394 PMCID: PMC6972569 DOI: 10.1111/1462-2920.14800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
Although plasmids play an important role in biological evolution, the number of plasmid families well‐characterized in terms of geographical distribution and evolution remains limited, especially in archaea. Here, we describe the first systematic study of an archaeal plasmid family, the pT26‐2 plasmid family. The in‐depth analysis of the distribution, biogeography and host–plasmid co‐evolution patterns of 26 integrated and 3 extrachromosomal plasmids of this plasmid family shows that they are widespread in Thermococcales and Methanococcales isolated from around the globe but are restricted to these two orders. All members of the family share seven core genes but employ different integration and replication strategies. Phylogenetic analysis of the core genes and CRISPR spacer distribution suggests that plasmids of the pT26‐2 family evolved with their hosts independently in Thermococcales and Methanococcales, despite these hosts exhibiting similar geographic distribution. Remarkably, core genes are conserved even in integrated plasmids that have lost replication genes and/or replication origins suggesting that they may be beneficial for their hosts. We hypothesize that the core proteins encode for a novel type of DNA/protein transfer mechanism, explaining the widespread oceanic distribution of the pT26‐2 plasmid family.
Collapse
Affiliation(s)
- Catherine Badel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Gaël Erauso
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France.,Aix-Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Annika L Gomez
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Ryan Catchpole
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Mathieu Gonnet
- Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Plouzané, France
| | - Jacques Oberto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| | - Violette Da Cunha
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Paris, France.,Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France
| |
Collapse
|
8
|
Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat Commun 2019; 10:3425. [PMID: 31366885 PMCID: PMC6668415 DOI: 10.1038/s41467-019-11433-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occasions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins. Most single-stranded DNA viruses have small genomes replicated by rolling circle mechanism which is initiated by the Rep protein. Here, using sequence similarity network and phylogenetic analyses, Kazlauskas et al. show that viral Reps evolved from Reps of bacterial and archaeal plasmids on multiple independent occasions.
Collapse
|
9
|
Mizuno CM, Prajapati B, Lucas‐Staat S, Sime‐Ngando T, Forterre P, Bamford DH, Prangishvili D, Krupovic M, Oksanen HM. Novel haloarchaeal viruses from Lake Retba infecting
Haloferax
and
Halorubrum
species. Environ Microbiol 2019; 21:2129-2147. [DOI: 10.1111/1462-2920.14604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Carolina M. Mizuno
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Bina Prajapati
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| | - Soizick Lucas‐Staat
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Telesphore Sime‐Ngando
- CNRS UMR 6023, Université Clermont‐AuvergneLaboratoire "Microorganismes: Génome et Environnement" (LMGE) F‐63000, Clermont‐Ferrand France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Dennis H. Bamford
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les ExtrêmophilesInstitut Pasteur, 25 rue du Docteur Roux 75015, Paris France
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of Helsinki Finland
| |
Collapse
|
10
|
Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, Koonin EV. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 2019; 21:2056-2078. [PMID: 30773816 PMCID: PMC6563490 DOI: 10.1111/1462-2920.14564] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sofia Medvedeva
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - David Prangishvili
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Towards functional characterization of archaeal genomic dark matter. Biochem Soc Trans 2019; 47:389-398. [PMID: 30710061 PMCID: PMC6393860 DOI: 10.1042/bst20180560] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/07/2023]
Abstract
A substantial fraction of archaeal genes, from ∼30% to as much as 80%, encode ‘hypothetical' proteins or genomic ‘dark matter'. Archaeal genomes typically contain a higher fraction of dark matter compared with bacterial genomes, primarily, because isolation and cultivation of most archaea in the laboratory, and accordingly, experimental characterization of archaeal genes, are difficult. In the present study, we present quantitative characteristics of the archaeal genomic dark matter and discuss comparative genomic approaches for functional prediction for ‘hypothetical' proteins. We propose a list of top priority candidates for experimental characterization with a broad distribution among archaea and those that are characteristic of poorly studied major archaeal groups such as Thaumarchaea, DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota) and Asgard.
Collapse
|
12
|
Wang Y, Chen B, Cao M, Sima L, Prangishvili D, Chen X, Krupovic M. Rolling-circle replication initiation protein of haloarchaeal sphaerolipovirus SNJ1 is homologous to bacterial transposases of the IS91 family insertion sequences. J Gen Virol 2018; 99:416-421. [DOI: 10.1099/jgv.0.001009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Beibei Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Mengzhuo Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Linshan Sima
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Xiangdong Chen
- China Center for Type Culture Collection, Wuhan, PR China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| |
Collapse
|
13
|
Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2017; 244:181-193. [PMID: 29175107 DOI: 10.1016/j.virusres.2017.11.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among viruses of bacteria or eukaryotes. The uniqueness of the virion morphologies is matched by the distinctiveness of the genomes of these viruses, with ∼75% of genes encoding unique proteins, refractory to functional annotation based on sequence analyses. In this review, we summarize the state-of-the-art knowledge on various aspects of archaeal virus genomics. First, we outline how structural and functional genomics efforts provided valuable insights into the functions of viral proteins and revealed intricate details of the archaeal virus-host interactions. We then highlight recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II Euryarchaeota, and others. These findings, combined with the recent discovery that archaeal viruses mediate a rapid turnover of thaumarchaea in the deep sea ecosystems, illuminate the prominent role of these viruses in the biosphere. Finally, we discuss the origins and evolution of archaeal viruses and emphasize the evolutionary relationships between viruses and non-viral mobile genetic elements. Further exploration of the archaeal virus diversity as well as functional studies on diverse virus-host systems are bound to uncover novel, unexpected facets of the archaeal virome.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France.
| | | | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| |
Collapse
|
14
|
A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat Microbiol 2017; 2:1446-1455. [PMID: 28827601 DOI: 10.1038/s41564-017-0009-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/17/2017] [Indexed: 11/08/2022]
Abstract
The major difference between viruses and plasmids is the mechanism of transferring their genomic information between host cells. Here, we describe the archaeal plasmid pR1SE from an Antarctic species of haloarchaea that transfers via a mechanism similar to a virus. pR1SE encodes proteins that are found in regularly shaped membrane vesicles, and the vesicles enclose the plasmid DNA. The released vesicles are capable of infecting a plasmid-free strain, which then gains the ability to produce plasmid-containing vesicles. pR1SE can integrate and replicate as part of the host genome, resolve out with fragments of host DNA incorporated or portions of the plasmid left behind, form vesicles and transfer to new hosts. The pR1SE mechanism of transfer of DNA could represent the predecessor of a strategy used by viruses to pass on their genomic DNA and fulfil roles in gene exchange, supporting a strong evolutionary connection between plasmids and viruses.
Collapse
|
15
|
Abstract
The deep sea is a massive, largely oligotrophic ecosystem, stretched over nearly 65% of the planet’s surface. Deep-sea planktonic communities are almost completely dependent upon organic carbon sinking from the productive surface, forming a vital component of global biogeochemical cycles. However, despite their importance, viruses from the deep ocean remain largely unknown. Here, we describe the first complete genomes of deep-sea viruses assembled from metagenomic fosmid libraries. “Candidatus Pelagibacter” (SAR11) phage HTVC010P and Puniceispirillum phage HMO-2011 are considered the most abundant cultured marine viruses known to date. Remarkably, some of the viruses described here recruited as many reads from deep waters as these viruses do in the photic zone, and, considering the gigantic scale of the bathypelagic habitat, these genomes provide information about what could be some of the most abundant viruses in the world at large. Their role in the viral shunt in the global ocean could be very significant. Despite the challenges encountered in inferring the identity of their hosts, we identified one virus predicted to infect members of the globally distributed SAR11 cluster. We also identified a number of putative proviruses from diverse taxa, including deltaproteobacteria, bacteroidetes, SAR11, and gammaproteobacteria. Moreover, our findings also indicate that lysogeny is the preferred mode of existence for deep-sea viruses inhabiting an energy-limited environment, in sharp contrast to the predominantly lytic lifestyle of their photic-zone counterparts. Some of the viruses show a widespread distribution, supporting the tenet “everything is everywhere” for the deep-ocean virome. The deep sea is among the largest known habitats and a critical cog in biogeochemical cycling but remains underexplored in its microbiology. Even more than is the case for its prokaryotic community, our knowledge of its viral component has remained limited by the paucity of information provided by studies dependent upon short sequence fragments. In this work, we attempt to fill this existing gap by using a combination of classical fosmid libraries with next-generation sequencing and assembly to recover long viral genomic fragments. We have sequenced ca. 6,000 fosmids from two metagenomics libraries made from prokaryotic biomass from the deep Mediterranean Sea and recovered twenty-eight complete viral genomes, all of them novel and quite distinct from all previously described viral genomes. They are preferentially found in deeper waters and are widely distributed all over the oceans. To our knowledge, this is the first report on complete and cosmopolitan viral genomes from the bathypelagic habitat.
Collapse
|
16
|
Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1. J Bacteriol 2016; 198:1952-1964. [PMID: 27137505 DOI: 10.1128/jb.00131-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. IMPORTANCE Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic tools to investigate SNJ1 and other viruses infecting Natrinema species as well as their hosts.
Collapse
|
17
|
Lossouarn J, Dupont S, Gorlas A, Mercier C, Bienvenu N, Marguet E, Forterre P, Geslin C. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents. Res Microbiol 2015; 166:742-52. [DOI: 10.1016/j.resmic.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
|
18
|
Abstract
Biologists used to draw schematic “universal” trees of life as metaphors illustrating the history of life. It is indeed a priori possible to construct an organismal tree connecting the three major domains of ribosome encoding organisms: Archaea, Bacteria and Eukarya, since they originated by cell division from LUCA. Several universal trees based on ribosomal RNA sequence comparisons proposed at the end of the last century are still widely used, although some of their main features have been challenged by subsequent analyses. Several authors have proposed to replace the traditional universal tree with a ring of life, whereas others have proposed more recently to include viruses as new domains. These proposals are misleading, suggesting that endosymbiosis can modify the shape of a tree or that viruses originated from the last universal common ancestor (LUCA). I propose here an updated version of Woese’s universal tree that includes several rootings for each domain and internal branching within domains that are supported by recent phylogenomic analyses of domain specific proteins. The tree is rooted between Bacteria and Arkarya, a new name proposed for the clade grouping Archaea and Eukarya. A consensus version, in which each of the three domains is unrooted, and a version in which eukaryotes emerged within archaea are also presented. This last scenario assumes the transformation of a modern domain into another, a controversial evolutionary pathway. Viruses are not indicated in these trees but are intrinsically present because they infect the tree from its roots to its leaves. Finally, I present a detailed tree of the domain Archaea, proposing the sub-phylum neo-Euryarchaeota for the monophyletic group of euryarchaeota containing DNA gyrase. These trees, that will be easily updated as new data become available, could be useful to discuss controversial scenarios regarding early life evolution.
Collapse
Affiliation(s)
- Patrick Forterre
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur , Paris, France ; Institut de Biologie Intégrative de la cellule, Université Paris-Saclay , Paris, France
| |
Collapse
|