1
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
2
|
Sugiura H, Nagase A, Oiki S, Mikami B, Watanabe D, Hashimoto W. Bacterial inducible expression of plant cell wall-binding protein YesO through conflict between Glycine max and saprophytic Bacillus subtilis. Sci Rep 2020; 10:18691. [PMID: 33122638 PMCID: PMC7596534 DOI: 10.1038/s41598-020-75359-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/07/2020] [Indexed: 01/22/2023] Open
Abstract
Saprophytic bacteria and plants compete for limited nutrient sources. Bacillus subtilis grows well on steamed soybeans Glycine max to produce the fermented food, natto. Here we focus on bacterial responses in conflict between B. subtilis and G. max. B. subtilis cells maintained high growth rates specifically on non-germinating, dead soybean seeds. On the other hand, viable soybean seeds with germinating capability attenuated the initial growth of B. subtilis. Thus, B. subtilis cells may trigger saprophytic growth in response to the physiological status of G. max. Scanning electron microscope observation indicated that B. subtilis cells on steamed soybeans undergo morphological changes to form apertures, demonstrating cell remodeling during saprophytic growth. Further, transcriptomic analysis of B. subtilis revealed upregulation of the gene cluster, yesOPQR, in colonies growing on steamed soybeans. Recombinant YesO protein, a putative, solute-binding protein for the ATP-binding cassette transporter system, exhibited an affinity for pectin-derived oligosaccharide from plant cell wall. The crystal structure of YesO, in complex with the pectin oligosaccharide, was determined at 1.58 Å resolution. This study expands our knowledge of defensive and offensive strategies in interspecies competition, which may be promising targets for crop protection and fermented food production.
Collapse
Affiliation(s)
- Haruka Sugiura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ayumi Nagase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Daisuke Watanabe
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
3
|
Abstract
Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.
Collapse
|
4
|
Autoregulation of SafA Assembly through Recruitment of a Protein Cross-Linking Enzyme. J Bacteriol 2018; 200:JB.00066-18. [PMID: 29712873 DOI: 10.1128/jb.00066-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
The coat of Bacillus subtilis spores is a multiprotein protective structure that also arbitrates many of the environmental interactions of the spore. The coat assembles around the cortex peptidoglycan layer and is differentiated into an inner and an outer layer and a crust. SafA governs assembly of the inner coat, whereas CotE drives outer coat assembly. SafA localizes to the cortex-coat interface. Both SafA and its short form C30 are substrates for Tgl, a coat-associated transglutaminase that cross-links proteins through ε-(γ-glutamyl)lysyl isopeptide bonds. We show that SafA and C30 are distributed between the coat and cortex layers. The deletion of tgl increases the extractability of SafA, mainly from the cortex. Tgl itself is mostly located in the inner coat and cortex. The localization of Tgl-cyan fluorescent protein (Tgl-CFP) is strongly, but not exclusively, dependent on safA However, the association of Tgl with the cortex requires safA Together, our results suggest an assembly pathway in which Tgl is first recruited to the forming spore in a manner that is only partially dependent on SafA and then is drafted to the cortex by SafA. Tgl, in turn, promotes the conversion of coat- and cortex-associated SafA into forms that resist extraction, possibly by catalyzing the cross-linking of SafA to other coat proteins, to the cortex, and/or to cortex-associated proteins. Therefore, the final assembly state of SafA relies on an autoregulatory pathway that requires the subcellular localization of a protein cross-linking enzyme. Tgl most likely exerts a "spotwelding" activity, cross-linking preformed complexes in the cortex and inner coat layers of spores.IMPORTANCE In this work, we show how two proteins work together to determine their subcellular location within the coat of bacterial endospores. Bacillus subtilis endospores are surrounded by a multilayer protein coat composed of over 80 proteins, which surrounds an underlying peptidoglycan layer (the spore cortex) protecting it from lytic enzymes. How specific coat proteins are targeted to specific layers of the coat is not well understood. We found that the protein SafA recruits a protein-cross-linking enzyme (a transglutaminase) to the cortex and inner layers of the coat, where both are cemented, by cross-linking, into macromolecular complexes.
Collapse
|
5
|
Abstract
Bacterial endospores possess multiple integument layers, one of which is the cortex peptidoglycan wall. The cortex is essential for the maintenance of spore core dehydration and dormancy and contains structural modifications that differentiate it from vegetative cell peptidoglycan and determine its fate during spore germination. Following the engulfment stage of sporulation, the cortex is synthesized within the intermembrane space surrounding the forespore. Proteins responsible for cortex synthesis are produced in both the forespore and mother cell compartments. While some of these proteins also contribute to vegetative cell wall synthesis, others are sporulation specific. In order for the bacterial endospore to germinate and resume metabolism, the cortex peptidoglycan must first be degraded through the action of germination-specific lytic enzymes. These enzymes are present, yet inactive, in the dormant spore and recognize the muramic-δ-lactam modification present in the cortex. Germination-specific lytic enzymes across Bacillaceae and Clostridiaceae share this specificity determinant, which ensures that the spore cortex is hydrolyzed while the vegetative cell wall remains unharmed. Bacillus species tend to possess two redundant enzymes, SleB and CwlJ, capable of sufficient cortex degradation, while the clostridia have only one, SleC. Additional enzymes are often present that cannot initiate the cortex degradation process, but which can increase the rate of release of small fragments into the medium. Between the two families, the enzymes also differ in the enzymatic activities they possess and the mechanisms acting to restrict their activation until germination has been initiated.
Collapse
|
6
|
Kim EY, Tyndall ER, Huang KC, Tian F, Ramamurthi KS. Dash-and-Recruit Mechanism Drives Membrane Curvature Recognition by the Small Bacterial Protein SpoVM. Cell Syst 2017; 5:518-526.e3. [PMID: 29102609 DOI: 10.1016/j.cels.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/24/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
In Bacillus subtilis, sporulation requires that the 26-amino acid protein SpoVM embeds specifically into the forespore membrane, a structure with convex curvature. How this nanometer-sized protein can detect curves on a micrometer scale is not well understood. Here, we report that SpoVM exploits a "dash-and-recruit" mechanism to preferentially accumulate on the forespore. Using time-resolved imaging and flow cytometry, we observe that SpoVM exhibits a faster adsorption rate onto membranes of higher convex curvature. This preferential adsorption is accurately modeled as a two-step process: first, an initial binding event occurs with a faster on rate, then cooperative recruitment of additional SpoVM molecules follows. We demonstrate that both this biochemical process and effective sporulation in vivo require an unstructured and flexible SpoVM N terminus. We propose that this two-pronged strategy of fast adsorption followed by recruitment of subsequent molecules is a general mechanism that allows small proteins to detect subtle curves with a radius 1,000-fold their size.
Collapse
Affiliation(s)
- Edward Y Kim
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin R Tyndall
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 2017; 13:e1007015. [PMID: 28945739 PMCID: PMC5629000 DOI: 10.1371/journal.pgen.1007015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Accepted: 09/09/2017] [Indexed: 11/18/2022] Open
Abstract
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5–15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria. All pathogenic and non-pathogenic bacteria that differentiate into dormant endospores including Clostridium difficile, Bacillus anthracis, and Bacillus subtilis, contain very high concentrations of the small molecule dipicolinic acid (DPA). This molecule displaces water in the spore core where it plays an integral role in spore resistance and dormancy. DPA and its contribution to spore dehydration were discovered in 1953 but the molecular basis for its accumulation in the spore has remained unclear. The developing endospore resides within a mother cell that assembles protective layers around the spore and nurtures it by providing mother-cell-produced molecules. DPA is produced in the mother cell at a late stage in development and then must be translocated across two membranes into the spore core. Here, we report the discovery of the missing DPA transporter, homologs of which are present in virtually all endospore-forming bacteria. Our data provide evidence for a simple two-step transport pathway in which the mother cell nurtures the developing spore by sequentially moving DPA across the two membranes that surround it.
Collapse
Affiliation(s)
| | - Alexander J. Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Andrew C. Kruse
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - David Z. Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Updegrove TB, Ramamurthi KS. Geometric protein localization cues in bacterial cells. Curr Opin Microbiol 2017; 36:7-13. [PMID: 28110195 DOI: 10.1016/j.mib.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Bacterial cells are highly organized at a molecular level. Understanding how specific proteins localize to their proper subcellular address has been a major challenge in bacterial cell biology. One mechanism, which appears to be increasingly more common, is the use of 'geometric cues' for protein localization. In this model, certain shape-sensing proteins recognize, and preferentially embed into, either negatively or positively curved (concave or convex, respectively) membranes. Here, we review examples of bacterial proteins that reportedly localize by sensing geometric cues and highlight emerging mechanistic understandings of how proteins may recognize subtle differences in membrane curvature.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
9
|
Rodrigues CDA, Ramírez-Guadiana FH, Meeske AJ, Wang X, Rudner DZ. GerM is required to assemble the basal platform of the SpoIIIA-SpoIIQ transenvelope complex during sporulation in Bacillus subtilis. Mol Microbiol 2016; 102:260-273. [PMID: 27381174 DOI: 10.1111/mmi.13457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 11/29/2022]
Abstract
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A-Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell-cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A-Q complex and a hub for the localization of mother cell and forespore proteins.
Collapse
Affiliation(s)
- Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Bacillus subtilis
Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol Spectr 2014; 2. [DOI: 10.1128/microbiolspec.tbs-0019-2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Endospore-forming bacteria, with
Bacillus subtilis
being the prevalent model organism, belong to the phylum Firmicutes. Although the last common ancestor of all
Firmicutes
is likely to have been an endospore-forming species, not every lineage in the phylum has maintained the ability to produce endospores (hereafter, spores). In 1997, the release of the full genome sequence for
B. subtilis
strain 168 marked the beginning of the genomic era for the study of spore formation (sporulation). In this original genome sequence, 139 of the 4,100 protein-coding genes were annotated as sporulation genes. By the time a revised genome sequence with updated annotations was published in 2009, that number had increased significantly, especially since transcriptional profiling studies (transcriptomics) led to the identification of several genes expressed under the control of known sporulation transcription factors. Over the past decade, genome sequences for multiple spore-forming species have been released (including several strains in the
Bacillus anthracis
/
Bacillus cereus
group and many
Clostridium
species), and phylogenomic analyses have revealed many conserved sporulation genes. Parallel advances in transcriptomics led to the identification of small untranslated regulatory RNAs (sRNAs), including some that are expressed during sporulation. An extended array of -omics techniques, i.e., techniques designed to probe gene function on a genome-wide scale, such as proteomics, metabolomics, and high-throughput protein localization studies, have been implemented in microbiology. Combined with the use of new computational methods for predicting gene function and inferring regulatory relationships on a global scale, these -omics approaches are uncovering novel information about sporulation and a variety of other bacterial cell processes.
Collapse
|