1
|
Jiang K, Chen X, Zhang W, Guo Y, Liu G. Nonribosomal antibacterial peptides isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microb Cell Fact 2023; 22:5. [PMID: 36609255 PMCID: PMC9824969 DOI: 10.1186/s12934-023-02018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND New antibiotics are urgently needed in clinical treatment of superdrug-resistant bacteria. Nonribosomal peptides (NRPs) are a major source of antibiotics because they exhibit structural diversity, and unique antibacterial mechanisms and resistance. Analysis of gene clusters of S. agglomeratus 5-1-3 showed that Clusters 3, 6, 12, 21, and 28 were used to synthesize NRPs. Here, we examined secondary metabolites of S. agglomeratus 5-1-3 isolated from soils in the Qinghai-Tibet Plateau, China, for NRPs with antibacterial activity. RESULTS We isolated a total of 36 Streptomyces strains with distinct colony morphological characteristics from 7 soil samples. We screened 8 Streptomyces strains resistant to methicillin-resistant Staphylococcus aureus (MRSA). We then selected S. agglomeratus 5-1-3 for further study based on results of an antibacterial activity test. Here, we isolated three compounds from S. agglomeratus 5-1-3 and characterized their properties. The crude extract was extracted with ethyl acetate and purified with column chromatography and semipreparative high-performance liquid chromatography (HPLC). We characterized the three compounds using NMR analyses as echinomycin (1), 5,7,4'-trihydroxy-3.3',5'-trimethoxy flavone (2), and 2,6,2', 6'-tetramethoxy-4,4-bis(2,3-epoxy-1-hydroxypropyl)-biphenyl (3). We tested the antibacterial activity of pure compounds from strain 5-1-3 with the Oxford cup method. NRP echinomycin (1) showed excellent anti-MRSA activity with a minimum inhibitory concentration (MIC) of 2.0 μg/mL. Meanwhile, MIC of compound 2 and 3 was 128.0 μg/mL for both. In addition, 203 mg of echinomycin was isolated from 10 L of the crude extract broth of strain 5-1-3. CONCLUSION In this study, S. agglomeratus 5-1-3 with strong resistance to MRSA was isolated from the soils in the Qinghai-Tibet Plateau. Strain 5-1-3 had a high yield of echinomycin (1) an NRP with a MIC of 2 μg/mL against MRSA. We propose that echinomycin derived from S. agglomeratus 5-1-3 may be a potent antibacterial agent for pharmaceutical use.
Collapse
Affiliation(s)
- Kan Jiang
- grid.411734.40000 0004 1798 5176College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Ximing Chen
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| | - Wei Zhang
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| | - Yehong Guo
- grid.411734.40000 0004 1798 5176College of Agronomy, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Guangxiu Liu
- grid.496923.30000 0000 9805 287XKey Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730030 Gansu China ,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730030 Gansu China
| |
Collapse
|
2
|
Bu F, Liu M, Xie Z, Chen X, Li G, Wang X. Targeted Anti-Biofilm Therapy: Dissecting Targets in the Biofilm Life Cycle. Pharmaceuticals (Basel) 2022; 15:1253. [PMID: 36297365 PMCID: PMC9611117 DOI: 10.3390/ph15101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/13/2024] Open
Abstract
Biofilm is a crucial virulence factor for microorganisms that causes chronic infection. After biofilm formation, the bacteria present improve drug tolerance and multifactorial defense mechanisms, which impose significant challenges for the use of antimicrobials. This indicates the urgent need for new targeted technologies and emerging therapeutic strategies. In this review, we focus on the current biofilm-targeting strategies and those under development, including targeting persistent cells, quorum quenching, and phage therapy. We emphasize biofilm-targeting technologies that are supported by blocking the biofilm life cycle, providing a theoretical basis for design of targeting technology that disrupts the biofilm and promotes practical application of antibacterial materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Papa R, Garzoli S, Vrenna G, Sabatino M, Sapienza F, Relucenti M, Donfrancesco O, Fiscarelli EV, Artini M, Selan L, Ragno R. Essential Oils Biofilm Modulation Activity, Chemical and Machine Learning Analysis. Application on Staphylococcus aureus Isolates from Cystic Fibrosis Patients. Int J Mol Sci 2020; 21:E9258. [PMID: 33291608 PMCID: PMC7730550 DOI: 10.3390/ijms21239258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial biofilm plays a pivotal role in chronic Staphylococcus aureus (S. aureus) infection and its inhibition may represent an important strategy to develop novel therapeutic agents. The scientific community is continuously searching for natural and "green alternatives" to chemotherapeutic drugs, including essential oils (EOs), assuming the latter not able to select resistant strains, likely due to their multicomponent nature and, hence, multitarget action. Here it is reported the biofilm production modulation exerted by 61 EOs, also investigated for their antibacterial activity on S. aureus strains, including reference and cystic fibrosis patients' isolated strains. The EOs biofilm modulation was assessed by Christensen method on five S. aureus strains. Chemical composition, investigated by GC/MS analysis, of the tested EOs allowed a correlation between biofilm modulation potency and putative active components by means of machine learning algorithms application. Some EOs inhibited biofilm growth at 1.00% concentration, although lower concentrations revealed different biological profile. Experimental data led to select antibiofilm EOs based on their ability to inhibit S. aureus biofilm growth, which were characterized for their ability to alter the biofilm organization by means of SEM studies.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Manuela Sabatino
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Filippo Sapienza
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Orlando Donfrancesco
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, via Alfonso Borelli 50, 00161 Rome, Italy; (M.R.); (O.D.)
| | - Ersilia Vita Fiscarelli
- Paediatric and Laboratory Department, Children’s Hospital and Institure Research Bambino Gesù, 00165 Rome, Italy;
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (G.V.); (M.A.)
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (S.G.); (M.S.); (F.S.)
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|