1
|
Fuchs H, Ullrich SR, Hedrich S. Vibrio natriegens as a superior host for the production of c-type cytochromes and difficult-to-express redox proteins. Sci Rep 2024; 14:6093. [PMID: 38480761 PMCID: PMC10937671 DOI: 10.1038/s41598-024-54097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
C-type cytochromes fulfil many essential roles in both aerobic and anaerobic respiration. Their characterization requires large quantities of protein which can be obtained through heterologous production. Heterologous production of c-type cytochromes in Escherichia coli is hindered since the ccmABCDEFGH genes necessary for incorporation of heme c are only expressed under anaerobic conditions. Different strategies were devised to bypass this obstacle, such as co-expressing the ccm genes from the pEC86 vector. However, co-expression methods restrict the choice of expression host and vector. Here we describe the first use of Vibrio natriegens Vmax X2 for the recombinant production of difficult-to-express redox proteins from the extreme acidophile Acidithiobacillus ferrooxidans CCM4253, including three c-type cytochromes. Co-expression of the ccm genes was not required to produce holo-c-type cytochromes in Vmax X2. E. coli T7 Express only produced holo-c-type cytochromes during co-expression of the ccm genes and was not able to produce the inner membrane cytochrome CycA. Additionally, Vmax X2 cell extracts contained higher portions of recombinant holo-proteins than T7 Express cell extracts. All redox proteins were translocated to the intended cell compartment in both hosts. In conclusion, V. natriegens represents a promising alternative for the production of c-type cytochromes and difficult-to-express redox proteins.
Collapse
Affiliation(s)
- Helena Fuchs
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany.
| | - Sophie R Ullrich
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Sabrina Hedrich
- TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09599, Freiberg, Germany.
| |
Collapse
|
2
|
Ilcu L, Denkhaus L, Brausemann A, Zhang L, Einsle O. Architecture of the Heme-translocating CcmABCD/E complex required for Cytochrome c maturation. Nat Commun 2023; 14:5190. [PMID: 37626034 PMCID: PMC10457321 DOI: 10.1038/s41467-023-40881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mono- and multiheme cytochromes c are post-translationally matured by the covalent attachment of heme. For this, Escherichia coli employs the most complex type of maturation machineries, the Ccm-system (for cytochrome c maturation). It consists of two membrane protein complexes, one of which shuttles heme across the membrane to a mobile chaperone that then delivers the cofactor to the second complex, an apoprotein:heme lyase, for covalent attachment. Here we report cryo-electron microscopic structures of the heme translocation complex CcmABCD from E. coli, alone and bound to the heme chaperone CcmE. CcmABCD forms a heterooctameric complex centered around the ABC transporter CcmAB that does not by itself transport heme. Our data suggest that the complex flops a heme group from the inner to the outer leaflet at its CcmBC interfaces, driven by ATP hydrolysis at CcmA. A conserved heme-handling motif (WxWD) at the periplasmic side of CcmC rotates the heme by 90° for covalent attachment to the heme chaperone CcmE that we find interacting exclusively with the CcmB subunit.
Collapse
Affiliation(s)
- Lorena Ilcu
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Lukas Denkhaus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Anton Brausemann
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Li SH, Kang I, Cho JC. Metabolic Versatility of the Family Halieaceae Revealed by the Genomics of Novel Cultured Isolates. Microbiol Spectr 2023; 11:e0387922. [PMID: 36916946 PMCID: PMC10100682 DOI: 10.1128/spectrum.03879-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
The family Halieaceae (OM60/NOR5 clade) is a gammaproteobacterial group abundant and cosmopolitan in coastal seawaters and plays an important role in response to phytoplankton blooms. However, the ecophysiology of this family remains understudied because of the vast gap between phylogenetic diversity and cultured representatives. Here, using six pure cultured strains isolated from coastal seawaters, we performed in-depth genomic analyses to provide an overview of the phylogeny and metabolic capabilities of this family. The combined analyses of 16S rRNA genes, genome sequences, and functional genes relevant to taxonomy demonstrated that each strain represents a novel species. Notably, two strains belonged to the hitherto-uncultured NOR5-4 and NOR5-12 subclades. Metabolic reconstructions revealed that the six strains likely have aerobic chemo- or photoheterotrophic lifestyles; five of them possess genes for proteorhodopsin or aerobic anoxygenic phototrophy. The presence of blue- or green-tuned proteorhodopsin in Halieaceae suggested their ability to adapt to light conditions varying with depth or coastal-to-open ocean transition. In addition to the genes of anaplerotic CO2 fixation, genes encoding a complete reductive glycine pathway for CO2 fixation were found in three strains. Putative polysaccharide utilization loci were detected in three strains, suggesting the association with phytoplankton blooms. Read mapping of various metagenomes and metatranscriptomes showed that the six strains are widely distributed and transcriptionally active in marine environments. Overall, the six strains genomically characterized in this study expand the phylogenetic and metabolic diversity of Halieaceae and likely serve as a culture resource for investigating the ecophysiological features of this environmentally relevant bacterial group. IMPORTANCE Although the family Halieaceae (OM60/NOR5 clade) is an abundant and cosmopolitan clade widely found in coastal seas and involved in interactions with phytoplankton, a limited number of cultured isolates are available. In this study, we isolated six pure cultured Halieaceae strains from coastal seawaters and performed a comparative physiological and genomic analysis to give insights into the phylogeny and metabolic potential of this family. The cultured strains exhibited diverse metabolic potential by harboring genes for anaplerotic CO2 fixation, proteorhodopsin, and aerobic anoxygenic phototrophy. Polysaccharide utilization loci detected in some of these strains also indicated an association with phytoplankton blooms. The cultivation of novel strains of Halieaceae and their genomic characteristics largely expanded the phylogenetic and metabolic diversity, which is important for future ecophysiological studies.
Collapse
Affiliation(s)
- Shan-Hui Li
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
4
|
Ciancio Casalini L, Piazza A, Masotti F, Garavaglia BS, Ottado J, Gottig N. Manganese oxidation counteracts the deleterious effect of low temperatures on biofilm formation in Pseudomonas sp. MOB-449. Front Mol Biosci 2022; 9:1015582. [DOI: 10.3389/fmolb.2022.1015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mn removal from groundwater by biological sand filter technology is negatively impacted by low temperatures in winter periods. Therefore, the need to study Mn(II)-oxidizing bacteria (MOB) having the potential to oxidize Mn(II) and form biofilms at low temperatures is imperative. These MOB can have potential as inocula for sand filter bioaugmentation strategies to optimize Mn removal during winter periods. We previously showed that a Pseudomonas sp. MOB-449 (MOB-449), isolated from a Mn biofilter, oxidizes Mn(II) in a biofilm-dependent way at low temperatures. In this work, MOB-449 Mn(II) oxidation and growth capacities were evaluated under planktonic and biofilm conditions at different temperatures. At 18°C, MOB-449 showed enhanced biofilm formation due to the addition of Mn(II) to the medium correlating with Mn(II) oxidation, compared to biofilms grown in control medium. Moreover, this enhancement on biofilm formation due to the addition of Mn(II) was only observed at 18°C. At this temperature, Mn(II) oxidation in membrane fractions collected from biofilms was induced by uncoupling oxidative phosphorylation from the electron transport chain with 2,4-Dinitrophenol. In Pseudomonas, a role for c-type cytochrome in Mn(II) oxidation has been demonstrated. Accordingly, transcriptional profiles of all terminal oxidases genes found in MOB-449 showed an induction of cytochrome c terminal oxidases expression mediated by Mn(II) oxidation at 18°C. Finally, heme peroxidase activity assays and MS analysis revealed that PetC, a cytochrome c5, and also CcmE, involved in the cytochrome c biogenesis machinery, are induced at 18°C only in the presence of Mn(II). These results present evidence supporting that cytochromes c and also the cytochrome c terminal oxidases are activated at low temperatures in the presence of Mn(II). Overall, this work demonstrate that in MOB-449 Mn(II) oxidation is activated at low temperatures to gain energy, suggesting that this process is important for survival under adverse environmental conditions and contributing to the understanding of the physiological role of bacterial Mn(II) oxidation.
Collapse
|
5
|
Giacomucci S, Mathieu-Denoncourt A, Vincent AT, Jannadi H, Duperthuy M. Experimental evolution of Vibrio cholerae identifies hypervesiculation as a way to increase motility in the presence of polymyxin B. Front Microbiol 2022; 13:932165. [PMID: 36090081 PMCID: PMC9454949 DOI: 10.3389/fmicb.2022.932165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio cholerae includes strains responsible for the cholera disease and is a natural inhabitant of aquatic environments. V. cholerae possesses a unique polar flagellum essential for motility, adhesion, and biofilm formation. In a previous study, we showed that motility and biofilm formation are altered in the presence of subinhibitory concentrations of polymyxin B in V. cholerae O1 and O139. In this study, we performed an experimental evolution to identify the genes restoring the motility in the presence of a subinhibitory concentration of polymyxin B. Mutations in five genes have been identified in three variants derived from two different parental strains A1552 and MO10: ihfA that encodes a subunit of the integration host factor (IHF), vacJ (mlaA) and mlaF, two genes belonging to the maintenance of the lipid asymmetry (Mla) pathway, dacB that encodes a penicillin-binding protein (PBP4) and involved in cell wall synthesis, and ccmH that encodes a c-type cytochrome maturation protein. We further demonstrated that the variants derived from MO10 containing mutations in vacJ, mlaF, and dacB secrete more and larger membrane vesicles that titer the polymyxin B, which increases the bacterial survival and is expected to limit its impact on the bacterial envelope and participate in the flagellum’s retention and motility.
Collapse
Affiliation(s)
- Sean Giacomucci
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | | | - Antony T. Vincent
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Hanen Jannadi
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Marylise Duperthuy,
| |
Collapse
|
6
|
Novoa-Aponte L, Argüello JM. Unique underlying principles shaping copper homeostasis networks. J Biol Inorg Chem 2022; 27:509-528. [PMID: 35802193 PMCID: PMC9470648 DOI: 10.1007/s00775-022-01947-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
Abstract Copper is essential in cells as a cofactor for key redox enzymes. Bacteria have acquired molecular components that sense, uptake, distribute, and expel copper ensuring that cuproenzymes are metallated and steady-state metal levels are maintained. Toward preventing deleterious reactions, proteins bind copper ions with high affinities and transfer the metal via ligand exchange, warranting that copper ions are always complexed. Consequently, the directional copper distribution within cell compartments and across cell membranes requires specific dynamic interactions and metal exchange between cognate holo-apo protein partners. These metal exchange reactions are determined by thermodynamic and kinetics parameters and influenced by mass action. Then, copper distribution can be conceptualized as a molecular system of singular interacting elements that maintain a physiological copper homeostasis. This review focuses on the impact of copper high-affinity binding and exchange reactions on the homeostatic mechanisms, the conceptual models to describe the cell as a homeostatic system, the various molecule functions that contribute to copper homeostasis, and the alternative system architectures responsible for copper homeostasis in model bacteria. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.,Genetics and Metabolism Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 60 Prescott St, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Gupta D, Shalvarjian KE, Nayak DD. An archaea-specific c-type cytochrome maturation machinery is crucial for methanogenesis in Methanosarcina acetivorans. eLife 2022; 11:76970. [PMID: 35380107 PMCID: PMC9084895 DOI: 10.7554/elife.76970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
c-Type cytochromes (cyt c) are proteins that undergo post-translational modification to covalently bind heme, which allows them to facilitate redox reactions in electron transport chains across all domains of life. Genomic evidence suggests that cyt c are involved in electron transfer processes among the Archaea, especially in members that produce or consume the potent greenhouse gas methane. However, neither the maturation machinery for cyt c in Archaea nor their role in methane metabolism has ever been functionally characterized. Here, we have used CRISPR-Cas9 genome editing tools to map a distinct pathway for cyt c biogenesis in the model methanogenic archaeon Methanosarcina acetivorans, and have also identified substrate-specific functional roles for cyt c during methanogenesis. Although the cyt c maturation machinery from M. acetivorans is universally conserved in the Archaea, our evolutionary analyses indicate that different clades of Archaea acquired this machinery through multiple independent horizontal gene transfer events from different groups of Bacteria. Overall, we demonstrate the convergent evolution of a novel Archaea-specific cyt c maturation machinery and its physiological role during methanogenesis, a process which contributes substantially to global methane emissions. Archaea are single-celled organisms that were discovered over half a century ago. Recently, there has been a renewed interest in these microbes because theyplay a key role in climate change by controlling greenhouse gas emissions, like methane. Indeed, methane-producing Archaea generate nearly 70% of the methane gas released into the atmosphere. A group of proteins called c-type cytochromes are essential to energy generation in several methane-producing archaea. However, it is a mystery how Archaea assemble their c-type cytochromes. In fact, genomic studies suggest that Archaea are missing some of the c-type cytochrome assembly machinery that bacteria use. This has led scientists to suspect that Archaea have an alternate mechanism for building these essential components. To solve this mystery, Gupta, Shalvarjian, and Nayak used CRISPR-Cas9 gene-editing tools to characterize which proteins are essential for c-type cytochrome production in Methanosarcina acetivorans, a species of Archaea that produces methane. These experiments showed that M. acetivorans discarded a few parts of the process used by bacteria to generate c-type cytochromes, streamlining the assembly of these proteins. By comparing the genes of different Archaeal species, Gupta, Shalvarjian and Nayak were able to determine that Archaea acquired the genes for producing c-type cytochromes from bacteria via horizontal gene transfer, a process in which genes move directly from one organism into another. The streamlining of the process took place later, as different Archaeal species evolved independently, but losing the same parts of the process. Gupta Shalvajiran and Nayak’s experiments also showed that c-type cytochromes are essential for the growth and fitness of methane-producing Archaea like M. acetivorans. The role of c-type cytochromes in methane production varies in different species of Archaea depending on their growth substrate or where they live. These results provide vital information about how Archaea produce methane, and the tools and techniques developed will aid further investigation of the role of Archaea in climate change.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Katie E Shalvarjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Dipti D Nayak
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
8
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
9
|
Brausemann A, Zhang L, Ilcu L, Einsle O. Architecture of the membrane-bound cytochrome c heme lyase CcmF. Nat Chem Biol 2021; 17:800-805. [PMID: 33958791 PMCID: PMC7611092 DOI: 10.1038/s41589-021-00793-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023]
Abstract
The covalent attachment of one or multiple heme cofactors to cytochrome c protein chains enables cytochrome c proteins to be used in electron transfer and redox catalysis in extracytoplasmic environments. A dedicated heme maturation machinery, whose core component is a heme lyase, scans nascent peptides after Sec-dependent translocation for CXnCH-binding motifs. Here we report the three-dimensional (3D) structure of the heme lyase CcmF, a 643-amino acid integral membrane protein, from Thermus thermophilus. CcmF contains a heme b cofactor at the bottom of a large cavity that opens toward the extracellular side to receive heme groups from the heme chaperone CcmE for cytochrome maturation. A surface groove on CcmF may guide the extended apoprotein to heme attachment at or near a loop containing the functionally essential WXWD motif, which is situated above the putative cofactor binding pocket. The structure suggests heme delivery from within the membrane, redefining the role of the chaperone CcmE.
Collapse
|
10
|
Rodrigues MX, Fiani N, Bicalho RC, Peralta S. Preliminary functional analysis of the subgingival microbiota of cats with periodontitis and feline chronic gingivostomatitis. Sci Rep 2021; 11:6896. [PMID: 33767308 PMCID: PMC7994850 DOI: 10.1038/s41598-021-86466-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
The subgingival microbial communities of domestic cats remain incompletely characterized and it is unknown whether their functional profiles are associated with disease. In this study, we used a shotgun metagenomic approach to explore the functional potential of subgingival microbial communities in client-owned cats, comparing findings between periodontally healthy cats and cats with naturally occurring chronic periodontitis, aggressive periodontitis, and feline chronic gingivostomatitis. Subgingival samples were subjected to shotgun sequencing and the metagenomic datasets were analyzed using the MG-RAST metagenomic analysis server and STAMP v2.1.3 (Statistical Analysis of Metagenomic Profiles) software. The microbial composition was also described to better understand the predicted features of the communities. The Respiration category in the level 1 Subsystems database varied significantly among groups. In this category, the abundance of V-Type ATP-synthase and Biogenesis of cytochrome c oxidases were significantly enriched in the diseased and in the healthy groups, respectively. Both features have been previously described in periodontal studies in people and are in consonance with the microbial composition of feline subgingival sites. In addition, the narH (nitrate reductase) gene frequency, identified using the KEGG Orthology database, was significantly increased in the healthy group. The results of this study provide preliminary functional insights of the microbial communities associated with periodontitis in domestic cats and suggest that the ATP-synthase and nitrate-nitrite-NO pathways may represent appropriate targets for the treatment of this common disease.
Collapse
Affiliation(s)
- Marjory Xavier Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Nadine Fiani
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Rodrigo Carvalho Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Santiago Peralta
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
11
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Kolli R, Engstler C, Akbaş Ş, Mower JP, Soll J, Carrie C. The OXA2a Insertase of Arabidopsis Is Required for Cytochrome c Maturation. PLANT PHYSIOLOGY 2020; 184:1042-1055. [PMID: 32759271 PMCID: PMC7536658 DOI: 10.1104/pp.19.01248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/28/2020] [Indexed: 06/02/2023]
Abstract
In yeast (Saccharomyces cerevisiae) and human (Homo sapiens) mitochondria, Oxidase assembly protein1 (Oxa1) is the general insertase for protein insertion from the matrix side into the inner membrane while Cytochrome c oxidase assembly protein18 (Cox18/Oxa2) is specifically involved in the topogenesis of the complex IV subunit, Cox2. Arabidopsis (Arabidopsis thaliana) mitochondria contain four OXA homologs: OXA1a, OXA1b, OXA2a, and OXA2b. OXA2a and OXA2b are unique members of the Oxa1 superfamily, in that they possess a tetratricopeptide repeat (TPR) domain at their C termini. Here, we determined the role of OXA2a by studying viable mutant plants generated by partial complementation of homozygous lethal OXA2a transfer-DNA insertional mutants using the developmentally regulated ABSCISIC ACID INSENSITIVE3 (ABI3) promoter. The ABI3p:OXA2a plants displayed growth retardation due to a reduction in the steady-state abundances of both c-type cytochromes, cytochrome c 1 and cytochrome c The observed reduction in the steady-state abundance of complex III could be attributed to cytochrome c 1 being one of its subunits. Expression of a soluble heme lyase from an organism with cytochrome c maturation system III could functionally complement the lack of OXA2a. This implies that OXA2a is required for the system I cytochrome c maturation of Arabidopsis. Due to the interaction of OXA2a with Cytochrome c maturation protein CcmF C-terminal-like protein (CCMFC) in a yeast split-ubiquitin based interaction assay, we propose that OXA2a aids in the membrane insertion of CCMFC, which is presumed to form the heme lyase component of the cytochrome c maturation pathway. In contrast with the crucial role played by the TPR domain of OXA2b, the TPR domain of OXA2a is not essential for its functionality.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Carina Engstler
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Şebnem Akbaş
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
13
|
Becerra G, Igeño MI, Merchán F, Sánchez-Clemente R, Blasco R. New evolving strategies revealed by transcriptomic analysis of a fur - mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT 5344. Microb Biotechnol 2019; 13:148-161. [PMID: 31006999 PMCID: PMC6922518 DOI: 10.1111/1751-7915.13408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptomic analysis (RNA-seq) of a fur mutant of P. pseudoalcaligenes CECT 5344 has revealed that Fur regulates the expression of more than 100 genes in this bacterial strain, most of them negatively. The highest upregulated genes in response to fur deletion, with respect to the wild type, both cultivated in LB medium, corresponded to genes implicated in iron uptake. They include both TonB-dependent siderophore transporters for the active transport across the outer membrane, and ABC-type and MSF-type transporters for the active transport across the cytoplasmic membrane. Therefore, the main response of this bacterium to iron limitation is expressing genes necessary for metabolism of Fe siderophores produced by other microorganisms (xenosiderophores). The number of genes whose expression decreased in the fur- mutant, as well as its normalized expression (fold change), was lower. Among them, it is remarkable the presence of one of the two cas operons of the two CRISP/Cas clusters was detected in the genome of this bacterium. The transcriptome was validated by qPCR, including the decrease in the expression of cas genes (cse1). The expression of cse1 was also decreased by limiting the amount of iron, carbon or nitrogen in the medium, or by adding menadione, a compound that causes oxidative stress. The higher decrease in cse1 expression was triggered by the addition of cyanide in minimal medium. These results suggest that this bacterium responds to stress conditions, and especially to cyanide, taking a reasonable risk with respect to both the uptake of (TonB-dependent receptors gates) and the tolerance to (reduced immunity) foreign nucleic acids. In conjunction, this can be considered a yet unknown molecular mechanism forcing bacterial evolution.
Collapse
Affiliation(s)
- Gracia Becerra
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain
| | - María Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Faustino Merchán
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Rubén Sánchez-Clemente
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Rafael Blasco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
14
|
Shevket SH, Gonzalez D, Cartwright JL, Kleanthous C, Ferguson SJ, Redfield C, Mavridou DAI. The CcmC-CcmE interaction during cytochrome c maturation by System I is driven by protein-protein and not protein-heme contacts. J Biol Chem 2018; 293:16778-16790. [PMID: 30206118 PMCID: PMC6204919 DOI: 10.1074/jbc.ra118.005024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Indexed: 12/30/2022] Open
Abstract
Cytochromes c are ubiquitous proteins, essential for life in most organisms. Their distinctive characteristic is the covalent attachment of heme to their polypeptide chain. This post-translational modification is performed by a dedicated protein system, which in many Gram-negative bacteria and plant mitochondria is a nine-protein apparatus (CcmA-I) called System I. Despite decades of study, mechanistic understanding of the protein-protein interactions in this highly complex maturation machinery is still lacking. Here, we focused on the interaction of CcmC, the protein that sources the heme cofactor, with CcmE, the pivotal component of System I responsible for the transfer of the heme to the apocytochrome. Using in silico analyses, we identified a putative interaction site between these two proteins (residues Asp47, Gln50, and Arg55 on CcmC; Arg73, Asp101, and Glu105 on CcmE), and we validated our findings by in vivo experiments in Escherichia coli Moreover, employing NMR spectroscopy, we examined whether a heme-binding site on CcmE contributes to this interaction and found that CcmC and CcmE associate via protein-protein rather than protein-heme contacts. The combination of in vivo site-directed mutagenesis studies and high-resolution structural techniques enabled us to determine at the residue level the mechanism for the formation of one of the key protein complexes for cytochrome c maturation by System I.
Collapse
Affiliation(s)
- Shevket H Shevket
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Diego Gonzalez
- the Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, Switzerland
| | - Jared L Cartwright
- the Bioscience Technology Facility, Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Colin Kleanthous
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Stuart J Ferguson
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom,
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom,
| | - Despoina A I Mavridou
- From the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, Kensington, London SW7 2DD, United Kingdom,
| |
Collapse
|
15
|
Morosov X, Davoudi CF, Baumgart M, Brocker M, Bott M. The copper-deprivation stimulon of Corynebacterium glutamicum comprises proteins for biogenesis of the actinobacterial cytochrome bc 1- aa 3 supercomplex. J Biol Chem 2018; 293:15628-15640. [PMID: 30154248 DOI: 10.1074/jbc.ra118.004117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
Aerobic respiration in Corynebacterium glutamicum involves a cytochrome bc 1-aa 3 supercomplex with a diheme cytochrome c 1, which is the only c-type cytochrome in this species. This organization is considered as typical for aerobic Actinobacteria. Whereas the biogenesis of heme-copper type oxidases like cytochrome aa 3 has been studied extensively in α-proteobacteria, yeast, and mammals, nothing is known about this process in Actinobacteria. Here, we searched for assembly proteins of the supercomplex by identifying the copper-deprivation stimulon, which might include proteins that insert copper into cytochrome aa 3 Using gene expression profiling, we found two copper starvation-induced proteins for supercomplex formation. The Cg2699 protein, named CtiP, contained 16 predicted transmembrane helices, and its sequence was similar to that of the copper importer CopD of Pseudomonas syringae in the N-terminal half and to the cytochrome oxidase maturation protein CtaG of Bacillus subtilis in its C-terminal half. CtiP deletion caused a growth defect similar to that produced by deletion of subunit I of cytochrome aa 3, increased copper tolerance, triggered expression of the copper-deprivation stimulon under copper sufficiency, and prevented co-purification of the supercomplex subunits. The secreted Cg1884 protein, named CopC, had a C-terminal transmembrane helix and contained a Cu(II)-binding motif. Its absence caused a conditional growth defect, increased copper tolerance, and also prevented co-purification of the supercomplex subunits. CtiP and CopC are conserved among aerobic Actinobacteria, and we propose a model of their functions in cytochrome aa 3 biogenesis. Furthermore, we found that the copper-deprivation response involves additional regulators besides the ECF sigma factor SigC.
Collapse
Affiliation(s)
- Xenia Morosov
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cedric-Farhad Davoudi
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Meike Baumgart
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Melanie Brocker
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael Bott
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
16
|
Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, Gruber-Vodicka HR, Richter M, Bach W, Amann R, Meyerdierks A. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys. Front Microbiol 2018; 9:680. [PMID: 29696004 PMCID: PMC5904459 DOI: 10.3389/fmicb.2018.00680] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys.
Collapse
Affiliation(s)
- Petra Pjevac
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dimitri V Meier
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Harald R Gruber-Vodicka
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Richter
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Ribocon GmbH, Bremen, Germany
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
17
|
Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors. mBio 2018; 9:mBio.02203-17. [PMID: 29487241 PMCID: PMC5829830 DOI: 10.1128/mbio.02203-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. The majority of our knowledge of the physiology of extracellular electron transfer derives from studies of electrons moving to the exterior of the cell. The physiological mechanisms and/or consequences of the reverse processes are largely uncharacterized. This report demonstrates that when coupled to oxygen reduction, electrode oxidation can result in cellular energy acquisition. This respiratory process has potentially important implications for how microorganisms persist in energy-limited environments, such as reduced sediments under changing redox conditions. From an applied perspective, this work has important implications for microbially catalyzed processes on electrodes, particularly with regard to understanding models of cellular conversion of electrons from cathodes to microbially synthesized products.
Collapse
|
18
|
Gabilly ST, Hamel PP. Maturation of Plastid c-type Cytochromes. FRONTIERS IN PLANT SCIENCE 2017; 8:1313. [PMID: 28798763 PMCID: PMC5526843 DOI: 10.3389/fpls.2017.01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/07/2023]
Abstract
Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.
Collapse
Affiliation(s)
- Stéphane T. Gabilly
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Molecular and Cellular Developmental Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
19
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28824661 DOI: 10.3389/fpls.2017.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| |
Collapse
|
20
|
Cline SG, Laughbaum IA, Hamel PP. CCS2, an Octatricopeptide-Repeat Protein, Is Required for Plastid Cytochrome c Assembly in the Green Alga Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1306. [PMID: 28824661 PMCID: PMC5541062 DOI: 10.3389/fpls.2017.01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
In bacteria and energy generating organelles, c-type cytochromes are a class of universal electron carriers with a heme cofactor covalently linked via one or two thioether bonds to a heme binding site. The covalent attachment of heme to apocytochromes is a catalyzed process, taking place via three evolutionarily distinct assembly pathways (Systems I, II, III). System II was discovered in the green alga Chlamydomonas reinhardtii through the genetic analysis of the ccs mutants (cytochrome csynthesis), which display a block in the apo- to holo- form conversion of cytochrome f and c6, the thylakoid lumen resident c-type cytochromes functioning in photosynthesis. Here we show that the gene corresponding to the CCS2 locus encodes a 1,719 amino acid polypeptide and identify the molecular lesions in the ccs2-1 to ccs2-5 alleles. The CCS2 protein displays seven degenerate amino acid repeats, which are variations of the octatricopeptide-repeat motif (OPR) recently recognized in several nuclear-encoded proteins controlling the maturation, stability, or translation of chloroplast transcripts. A plastid site of action for CCS2 is inferred from the finding that GFP fused to the first 100 amino acids of the algal protein localizes to chloroplasts in Nicotiana benthamiana. We discuss the possible functions of CCS2 in the heme attachment reaction.
Collapse
Affiliation(s)
- Sara G. Cline
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
| | - Isaac A. Laughbaum
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
| | - Patrice P. Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, ColumbusOH, United States
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, ColumbusOH, United States
- *Correspondence: Patrice P. Hamel,
| |
Collapse
|
21
|
Rodrigues EP, Soares CDP, Galvão PG, Imada EL, Simões-Araújo JL, Rouws LFM, de Oliveira ALM, Vidal MS, Baldani JI. Identification of Genes Involved in Indole-3-Acetic Acid Biosynthesis by Gluconacetobacter diazotrophicus PAL5 Strain Using Transposon Mutagenesis. Front Microbiol 2016; 7:1572. [PMID: 27774087 PMCID: PMC5053998 DOI: 10.3389/fmicb.2016.01572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 02/03/2023] Open
Abstract
Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.
Collapse
Affiliation(s)
- Elisete P Rodrigues
- Laboratório de Genética de Microrganismos, Departamento de Biologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | | - Eddie L Imada
- Laboratório de Genética de Microrganismos, Departamento de Biologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | | - André L M de Oliveira
- Laboratório de Bioquímica Molecular, Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina Londrina, Brazil
| | | | | |
Collapse
|
22
|
Arshad A, Speth DR, de Graaf RM, Op den Camp HJM, Jetten MSM, Welte CU. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea. Front Microbiol 2015; 6:1423. [PMID: 26733968 PMCID: PMC4683180 DOI: 10.3389/fmicb.2015.01423] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is presented and discussed.
Collapse
Affiliation(s)
- Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Daan R Speth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Rob M de Graaf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| |
Collapse
|
23
|
The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential. J Bacteriol 2014; 197:794-806. [PMID: 25448817 DOI: 10.1128/jb.02127-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H(+) or Na(+). In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na(+)/H(+) antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na(+) transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.
Collapse
|
24
|
Abstract
Mitochondria are the energy-producing organelles of our cells and derive from bacterial ancestors that became endosymbionts of microorganisms from a different lineage, together with which they formed eukaryotic cells. For a long time it has remained unclear from which bacteria mitochondria actually evolved, even if these organisms in all likelihood originated from the α lineage of proteobacteria. A recent article (Degli Esposti M, et al. 2014. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 9:e96566) has presented novel evidence indicating that methylotrophic bacteria could be among the closest living relatives of mitochondrial ancestors. Methylotrophs are ubiquitous bacteria that live on single carbon sources such as methanol and methane; in the latter case they are called methanotrophs. In this review, I examine their possible ancestry to mitochondria within a survey of the common features that can be found in the central and terminal bioenergetic systems of proteobacteria and mitochondria. I also discuss previously overlooked information on methanotrophic bacteria, in particular their intracytoplasmic membranes resembling mitochondrial cristae and their capacity of establishing endosymbiotic relationships with invertebrate animals and archaic plants. This information appears to sustain the new idea that mitochondrial ancestors could be related to extant methanotrophic proteobacteria, a possibility that the genomes of methanotrophic endosymbionts will hopefully clarify.
Collapse
|
25
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
26
|
Abbrescia A, Martino PL, Panelli D, Sardanelli AM, Papa S, Alifano P, Palese LL, Gaballo A. The respiratory chains of four strains of the alkaliphilic Bacillus clausii. FEBS Open Bio 2014; 4:714-21. [PMID: 25161879 PMCID: PMC4141192 DOI: 10.1016/j.fob.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
It is important to understand how alkaliphilic prokaryotes thrive at high pH. An interesting issue is their ability to cope with bioenergetics at high pH. We show that four genetically similar strains adopt different biochemical behaviors. Two of the strains show a functional redundancy of the terminal part of the respiratory chain. Biochemical data correlate with the expression of cytochrome c oxidase and quinol oxidase genes (heme-copper types).
A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - S Papa
- Institute of Biomembranes and Bioenergetics (IBBE), Italian Research Council (CNR), Bari, Italy
| | - P Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy
| | | | - A Gaballo
- Nanoscience Institute-CNR, U.O.S. NNL, Lecce, Italy
| |
Collapse
|
27
|
Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PMJ, Daffonchio D, Bandi C. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 2014; 9:e96566. [PMID: 24804722 PMCID: PMC4013037 DOI: 10.1371/journal.pone.0096566] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Abstract
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.
Collapse
Affiliation(s)
| | - Bessem Chouaia
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Francesco Comandatore
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Davide Sassera
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| | | | - Daniele Daffonchio
- Department of Food, Environmental and Evolutionary Sciences, University of Milan, Milan, Italy
| | - Claudio Bandi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, University of Milan, Milan, Italy
| |
Collapse
|
28
|
The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 2014; 196:2552-62. [PMID: 24794567 DOI: 10.1128/jb.01652-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set out to investigate the role of aerobic respiration in both energy metabolism and magnetite biomineralization of M. gryphiswaldense. Although three operons encoding putative terminal cbb3-type, aa3-type, and bd-type oxidases were identified in the genome assembly of M. gryphiswaldense, genetic and biochemical analyses revealed that only cbb3 and bd are required for oxygen respiration, whereas aa3 had no physiological significance under the tested conditions. While the loss of bd had no effects on growth and magnetosome synthesis, inactivation of cbb3 caused pleiotropic effects under microaerobic conditions in the presence of nitrate. In addition to their incapability of simultaneous nitrate and oxygen reduction, cbb3-deficient cells had complex magnetosome phenotypes and aberrant morphologies, probably by disturbing the redox balance required for proper growth and magnetite biomineralization. Altogether, besides being the primary terminal oxidase for aerobic respiration, cbb3 oxidase may serve as an oxygen sensor and have a further role in poising proper redox conditions required for magnetite biomineralization.
Collapse
|
29
|
Goosens VJ, Monteferrante CG, van Dijl JM. Co-factor insertion and disulfide bond requirements for twin-arginine translocase-dependent export of the Bacillus subtilis Rieske protein QcrA. J Biol Chem 2014; 289:13124-31. [PMID: 24652282 DOI: 10.1074/jbc.m113.529677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway can transport folded and co-factor-containing cargo proteins over bacterial cytoplasmic membranes. Functional Tat machinery components, a folded state of the cargo protein and correct co-factor insertion in the cargo protein are generally considered as prerequisites for successful translocation. The present studies were aimed at a dissection of these requirements with regard to the Rieske iron-sulfur protein QcrA of Bacillus subtilis. Notably, QcrA is a component of the cytochrome bc1 complex, which is conserved from bacteria to man. Single amino acid substitutions were introduced into the Rieske domain of QcrA to prevent either co-factor binding or disulfide bond formation. Both types of mutations precluded QcrA translocation. Importantly, a proofreading hierarchy was uncovered, where a QcrA mutant defective in disulfide bonding was quickly degraded, whereas mutant QcrA proteins defective in co-factor binding accumulated in the cytoplasm and membrane. Altogether, these are the first studies on Tat-dependent protein translocation where both oxidative folding and co-factor attachment have been addressed in a single native molecule.
Collapse
Affiliation(s)
- Vivianne J Goosens
- From the Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P. O. Box 30001, 9700 RB, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
31
|
Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization. mBio 2013; 4:e00976-13. [PMID: 24302255 PMCID: PMC3870253 DOI: 10.1128/mbio.00976-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In their recent article, Hammer et al. (N. D. Hammer, M. L. Reniere, J. E. Cassat, Y. Zhang, A. O. Hirsch, M. Indriati Hood, and E. P. Skaar, mBio 4:e00241-13, 2013) described the dual functions of the two terminal oxidases encoded by cydBA and qoxABCD in Staphylococcus aureus. The aerobic growth of cydB or qoxB single mutant bacteria was barely affected. However, a cydB qoxB double mutant was completely unable to respire and exhibited the small-colony variant phenotype that is typical of menaquinone and heme biosynthesis mutants. The authors found that the two terminal oxidases play a role in pathogenesis. In a systemic mouse infection model, it turned out that in the cydB mutant the bacterial burden was significantly decreased in the heart, kidneys, and liver, while in the qoxB mutant it was decreased only in the liver. These results illustrate that both terminal oxidases contribute to fitness and virulence, representing promising candidates for the development of antimicrobials.
Collapse
|
32
|
Mavridou DAI, Clark MN, Choulat C, Ferguson SJ, Stevens JM. Probing heme delivery processes in cytochrome c biogenesis System I. Biochemistry 2013; 52:7262-70. [PMID: 24044352 PMCID: PMC3806149 DOI: 10.1021/bi400398t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Cytochromes c comprise
a diverse and widespread
family of proteins containing covalently bound heme that are central
to the life of most organisms. In many bacteria and in certain mitochondria,
the synthesis of cytochromes c is performed by a
complex post-translational modification apparatus called System I
(or cytochrome c maturation, Ccm, system). In Escherichia coli, there are eight maturation proteins,
several of which are involved in heme handling, but the mechanism
of heme transfer from one protein to the next is not known. Attachment
of the heme to the apocytochrome occurs via a novel covalent bond
to a histidine residue of the heme chaperone CcmE. The discovery of
a variant maturation system (System I*) has provided a new tool for
studying cytochrome c assembly because the variant
CcmE functions via a cysteine residue in the place of the histidine
of System I. In this work, we use site-directed mutagenesis on both
maturation systems to probe the function of the individual component
proteins as well as their concerted action in transferring heme to
the cytochrome c substrate. The roles of CcmA, CcmC,
CcmE, and CcmF in the heme delivery process are compared between Systems
I and I*. We show that a previously proposed quinone-binding site
on CcmF is not essential for either system. Significant differences
in the heme chemistry involved in the formation of cytochromes c in the variant system add new pieces to the cytochrome c biogenesis puzzle.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. mBio 2013; 4:e00475-13. [PMID: 24045640 PMCID: PMC3781833 DOI: 10.1128/mbio.00475-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we named CcsX, is required for heme insertion in cytochrome c. Inactivation of CcsX resulted in loss of c-type heme absorbance, impaired growth and virulence of M. tuberculosis, and induced cytochrome bd oxidase. This suggests that the bioenergetically less efficient bd oxidase can compensate for deficient cytochrome c oxidase activity, highlighting the flexibility of the M. tuberculosis respiratory chain. A spontaneous mutation in the active site of vitamin K epoxide reductase (VKOR) suppressed phenotypes of the CcsX mutant and abrogated the activity of the disulfide bond-dependent alkaline phosphatase, which shows that VKOR is the major disulfide bond catalyzing protein in the periplasm of M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis requires oxygen for growth; however, the biogenesis of respiratory chain components in mycobacteria has not been explored. Here, we identified a periplasmic thioredoxin, CcsX, necessary for heme insertion into cytochrome c. We investigated the consequences of disrupting cytochrome c maturation (CCM) for growth and survival of M. tuberculosis in vitro and for its pathogenesis. Appearance of a second-site suppressor mutation in the periplasmic disulfide bond catalyzing protein VKOR indicates the strong selective pressure for a functional cytochrome c oxidase. The observation that M. tuberculosis is able to partially compensate for defective CCM by upregulation of the cytochrome bd oxidase exposes a functional role of this alternative terminal oxidase under normal aerobic conditions and during pathogenesis. This suggests that targeting both oxidases simultaneously might be required to effectively disrupt respiration in M. tuberculosis.
Collapse
|
34
|
Oosterkamp MJ, Veuskens T, Talarico Saia F, Weelink SAB, Goodwin LA, Daligault HE, Bruce DC, Detter JC, Tapia R, Han CS, Land ML, Hauser LJ, Langenhoff AAM, Gerritse J, van Berkel WJH, Pieper DH, Junca H, Smidt H, Schraa G, Davids M, Schaap PJ, Plugge CM, Stams AJM. Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601(T.). PLoS One 2013; 8:e66971. [PMID: 23825601 PMCID: PMC3692508 DOI: 10.1371/journal.pone.0066971] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/14/2013] [Indexed: 12/04/2022] Open
Abstract
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Collapse
Affiliation(s)
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Lynne A. Goodwin
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Hajnalka E. Daligault
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Roxanne Tapia
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Cliff S. Han
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Miriam L. Land
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Loren J. Hauser
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholz Centre for Infection Research, Braunschweig, Germany
| | - Howard Junca
- Research Group Microbial Ecology: Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen, Bogotá, Colombia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Mark Davids
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
35
|
Bewley KD, Ellis KE, Firer-Sherwood MA, Elliott SJ. Multi-heme proteins: nature's electronic multi-purpose tool. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:938-48. [PMID: 23558243 DOI: 10.1016/j.bbabio.2013.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023]
Abstract
While iron is often a limiting nutrient to Biology, when the element is found in the form of heme cofactors (iron protoporphyrin IX), living systems have excelled at modifying and tailoring the chemistry of the metal. In the context of proteins and enzymes, heme cofactors are increasingly found in stoichiometries greater than one, where a single protein macromolecule contains more than one heme unit. When paired or coupled together, these protein associated heme groups perform a wide variety of tasks, such as redox communication, long range electron transfer and storage of reducing/oxidizing equivalents. Here, we review recent advances in the field of multi-heme proteins, focusing on emergent properties of these complex redox proteins, and strategies found in Nature where such proteins appear to be modular and essential components of larger biochemical pathways. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Kathryn D Bewley
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
36
|
Karamoko M, Gabilly ST, Hamel PP. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis. FRONTIERS IN PLANT SCIENCE 2013; 4:476. [PMID: 24348486 PMCID: PMC3842002 DOI: 10.3389/fpls.2013.00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Thiol oxidation to disulfides and the reverse reaction, i.e., disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e., thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.
Collapse
Affiliation(s)
- Mohamed Karamoko
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Stéphane T. Gabilly
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
| | - Patrice P. Hamel
- Department of Molecular Genetics, The Ohio State UniversityColumbus, OH, USA
- Department of Molecular and Cellular Biochemistry, The Ohio State UniversityColumbus, OH, USA
- *Correspondence: Patrice P. Hamel, Department of Molecular Genetics, The Ohio State University, 500 Aronoff Laboratory, 318 West 12th Avenue, 43210 Columbus, OH, USA e-mail:
| |
Collapse
|
37
|
Schmitt J, Joost I, Skaar EP, Herrmann M, Bischoff M. Haemin represses the haemolytic activity of Staphylococcus aureus in an Sae-dependent manner. MICROBIOLOGY (READING, ENGLAND) 2012; 158:2619-2631. [PMID: 22859613 PMCID: PMC4083625 DOI: 10.1099/mic.0.060129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/29/2012] [Accepted: 07/26/2012] [Indexed: 01/26/2023]
Abstract
Staphylococcus aureus is a major human pathogen and a common cause of nosocomial infections. This facultative pathogen produces a large arsenal of virulence factors, including the haemolysins, which allow the bacterium to lyse erythrocytes and thereby release large amounts of the haem-containing haemoglobin. The released haem is thought to be the main iron source of this organism during the course of infection, and is considered to be crucial for bacterial proliferation in vivo. High concentrations of haem and its degradation products, on the other hand, are known to be toxic for S. aureus, making it essential for the pathogen to tightly control haem release from red blood cells. Here we show that S. aureus responds to haemin by downregulating the expression of haemolysins. Subinhibitory concentrations of haemin were found to significantly reduce transcription of the haemolysin genes hlb (encoding β-haemolysin) and hlgA (encoding the S-class component of γ-haemolysin), while hla (encoding α-haemolysin) and RNAIII (encoding δ-haemolysin) transcription did not appear to be affected. The presence of haemin also reduced the haemolytic potential of the supernatants of S. aureus LS1 cultures. Inactivation of the sae locus in LS1 abolished the haemin effect on the transcription of haemolysin genes, indicating that the two-component regulatory system is required for this regulatory effect. Iron limitation, on the other hand, was found to induce the expression of haemolysins, and this effect was again abolished in the sae mutant, indicating that S. aureus modulates its haemolysin production in response to iron and haem availability in an Sae-dependent manner.
Collapse
Affiliation(s)
- Julia Schmitt
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Insa Joost
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Eric P. Skaar
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, Homburg/Saar, Germany
| |
Collapse
|
38
|
Arif MI, Samin G, van Leeuwen JGE, Oppentocht J, Janssen DB. Novel dehalogenase mechanism for 2,3-dichloro-1-propanol utilization in Pseudomonas putida strain MC4. Appl Environ Microbiol 2012; 78:6128-36. [PMID: 22752160 PMCID: PMC3416625 DOI: 10.1128/aem.00760-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/14/2012] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol (DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy source for growth was isolated from contaminated soil. Degradation of DCP was found to start with oxidation and concomitant dehalogenation catalyzed by a 72-kDa monomeric protein (DppA) that was isolated from cell lysate. The dppA gene was cloned from a cosmid library and appeared to encode a protein equipped with a signal peptide and that possessed high similarity to quinohemoprotein alcohol dehydrogenases (ADHs), particularly ADH IIB and ADH IIG from Pseudomonas putida HK. This novel dehalogenating dehydrogenase has a broad substrate range, encompassing a number of nonhalogenated alcohols and haloalcohols. With DCP, DppA exhibited a k(cat) of 17 s(-1). (1)H nuclear magnetic resonance experiments indicated that DCP oxidation by DppA in the presence of 2,6-dichlorophenolindophenol (DCPIP) and potassium ferricyanide [K(3)Fe(CN)(6)] yielded 2-chloroacrolein, which was oxidized to 2-chloroacrylic acid.
Collapse
Affiliation(s)
- Muhammad Irfan Arif
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | | | | | | | | |
Collapse
|
39
|
Lim CK, Hassan KA, Tetu SG, Loper JE, Paulsen IT. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS One 2012; 7:e39139. [PMID: 22723948 PMCID: PMC3377617 DOI: 10.1371/journal.pone.0039139] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
40
|
Gupta S, Pawaria S, Lu C, Hade MD, Singh C, Yeh SR, Dikshit KL. An unconventional hexacoordinated flavohemoglobin from Mycobacterium tuberculosis. J Biol Chem 2012; 287:16435-46. [PMID: 22437825 DOI: 10.1074/jbc.m111.329920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of D-lactate dehydrogenase (D-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited D-lactate:phenazine methosulfate reductase activity and oxidized D-lactate into pyruvate by converting the heme iron from Fe(3+) to Fe(2+) in a FAD-dependent manner, indicating electron transfer from D-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that D-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding D-LDH, we propose that the novel D-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe(3+)/Fe(2+) redox states.
Collapse
Affiliation(s)
- Sanjay Gupta
- Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Heme-copper terminal oxidase using both cytochrome c and ubiquinol as electron donors. Proc Natl Acad Sci U S A 2012; 109:3275-80. [PMID: 22334648 DOI: 10.1073/pnas.1121040109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytochrome c oxidase Cox2 has been purified from native membranes of the hyperthermophilic eubacterium Aquifex aeolicus. It is a cytochrome ba(3) oxidase belonging to the family B of the heme-copper containing terminal oxidases. It consists of three subunits, subunit I (CoxA2, 63.9 kDa), subunit II (CoxB2, 16.8 kDa), and an additional subunit IIa of 5.2 kDa. Surprisingly it is able to oxidize both reduced cytochrome c and ubiquinol in a cyanide sensitive manner. Cox2 is part of a respiratory chain supercomplex. This supercomplex contains the fully assembled cytochrome bc(1) complex and Cox2. Although direct ubiquinol oxidation by Cox2 conserves less energy than ubiquinol oxidation by the cytochrome bc(1) complex followed by cytochrome c oxidation by a cytochrome c oxidase, ubiquinol oxidation by Cox2 is of advantage when all ubiquinone would be completely reduced to ubiquinol, e.g., by the sulfidequinone oxidoreductase, because the cytochrome bc(1) complex requires the presence of ubiquinone to function according to the Q-cycle mechanism. In the case that all ubiquinone has been reduced to ubiquinol its reoxidation by Cox2 will enable the cytochrome bc(1) complex to resume working.
Collapse
|
42
|
Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role. PLoS Comput Biol 2012; 8:e1002356. [PMID: 22319430 PMCID: PMC3271017 DOI: 10.1371/journal.pcbi.1002356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022] Open
Abstract
HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. HD amino acid duplex can be found in the active center of different metallo-enzymes. An HD motif is positioned directly on the amyloid beta (Aβ) fragment and on the carboxy-terminal region of the extracellular domain of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). The conservation of the HD dyad is not position specific and it cannot be seen in a multiple alignment. Yet we show with a novel statistical method using evolutionary modeling that HD motif is positively selected by evolution on APPOs, despite the fact that HD dyad is underrepresented in the proteomes of all species of the animal kingdom. CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the APPOs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R)) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.
Collapse
|
43
|
Czapla M, Borek A, Sarewicz M, Osyczka A. Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis. Protein Eng Des Sel 2011; 25:15-25. [PMID: 22119789 PMCID: PMC3276305 DOI: 10.1093/protein/gzr055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bc1 (mitochondrial complex III), one of the key enzymes of biological energy conversion, is a functional homodimer in which each monomer contains three catalytic subunits: cytochrome c1, the iron–sulfur subunit and cytochrome b. The latter is composed of eight transmembrane α-helices which, in duplicate, form a hydrophobic core of a dimer. We show that two cytochromes b can be fused into one 16-helical subunit using a number of different peptide linkers that vary in length but all connect the C-terminus of one cytochrome with the N-terminus of the other. The fusion proteins replace two cytochromes b in the dimer defining a set of available protein templates for introducing mutations that allow breaking symmetry of a dimer. A more detailed comparison of the form with the shortest, 3 amino acid, linker to the form with 12 amino acid linker established that both forms display similar level of structural plasticity to accommodate several, but not all, asymmetric patterns of mutations that knock out individual segments of cofactor chains. While the system based on a fused gene does not allow for the assessments of the functionality of electron-transfer paths in vivo, the family of proteins with fused cytochrome b offers attractive model for detailed investigations of molecular mechanism of catalysis at in vitro/reconstitution level.
Collapse
Affiliation(s)
- Monika Czapla
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | |
Collapse
|
44
|
Transcriptomic response of Listeria monocytogenes during the transition to the long-term-survival phase. Appl Environ Microbiol 2011; 77:5966-72. [PMID: 21764970 DOI: 10.1128/aem.00596-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Listeria monocytogenes can change its cellular morphology from bacilli to cocci during the transition to the long-term-survival (LTS) phase. The LTS cells demonstrated increased baro- and thermotolerance compared to their vegetative counterparts. So far, the underlying mechanisms that trigger this morphological and physiological transition remain largely unknown. In this study, we compared the transcriptomic profiles of L. monocytogenes serotype 4b strain F2365 at different growth stages in tryptic soy broth with yeast extract (TSBYE) using a whole-genome DNA chip approach. We identified a total of 225 differentially expressed genes (≥4-fold; P < 0.05) during the transition to the LTS phase in TSBYE. Genes related to cell envelope structure, energy metabolism, and transport were most significantly upregulated in the LTS phase. The upregulation of compatible solute transporters may lead to the accumulation of cellular solutes, lowering intracellular water activity and thus increasing bacterial stress resistance during the transition to the LTS phase. The downregulation of genes associated with protein synthesis may indicate a status of metabolic dormancy of the LTS cells. The transcriptomic profiles of resuscitated LTS cells in fresh TSBYE resembled those of log-phase cells (r=0.94), as the LTS cells rapidly resume metabolic activities and transit back to log phase with decreased baro- and thermotolerance.
Collapse
|
45
|
Arai H. Regulation and Function of Versatile Aerobic and Anaerobic Respiratory Metabolism in Pseudomonas aeruginosa. Front Microbiol 2011; 2:103. [PMID: 21833336 PMCID: PMC3153056 DOI: 10.3389/fmicb.2011.00103] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO), and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo, Japan
| |
Collapse
|
46
|
Gao H, Barua S, Liang Y, Wu L, Dong Y, Reed S, Chen J, Culley D, Kennedy D, Yang Y, He Z, Nealson KH, Fredrickson JK, Tiedje JM, Romine M, Zhou J. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration. Microb Biotechnol 2011; 3:455-66. [PMID: 21255343 PMCID: PMC3815811 DOI: 10.1111/j.1751-7915.2010.00181.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c‐type cytochromes. To investigate the involvement of c‐type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr ‐1, 36 in‐frame deletion mutants, among possible 41 predicted, c‐type cytochrome genes were obtained. The potential involvement of each individual c‐type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well‐studied c‐type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr ‐1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c‐type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.
Collapse
Affiliation(s)
- Haichun Gao
- College of Life Sciences and Institute of Microbiology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tripodi KEJ, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme Res 2011; 2011:873230. [PMID: 21603276 PMCID: PMC3092630 DOI: 10.4061/2011/873230] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.
Collapse
Affiliation(s)
- Karina E J Tripodi
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
48
|
A novel component of the disulfide-reducing pathway required for cytochrome c assembly in plastids. Genetics 2011; 187:793-802. [PMID: 21220358 DOI: 10.1534/genetics.110.125369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plastids, the conversion of energy in the form of light to ATP requires key electron shuttles, the c-type cytochromes, which are defined by the covalent attachment of heme to a CXXCH motif. Plastid c-type cytochrome biogenesis occurs in the thylakoid lumen and requires a system for transmembrane transfer of reductants. Previously, CCDA and CCS5/HCF164, found in all plastid-containing organisms, have been proposed as two components of the disulfide-reducing pathway. In this work, we identify a small novel protein, CCS4, as a third component in this pathway. CCS4 was genetically identified in the green alga Chlamydomonas reinhardtii on the basis of the rescue of the ccs4 mutant, which is blocked in the synthesis of holoforms of plastid c-type cytochromes, namely cytochromes f and c(6). Although CCS4 does not display sequence motifs suggestive of redox or heme-binding function, biochemical and genetic complementation experiments suggest a role in the disulfide-reducing pathway required for heme attachment to apoforms of cytochromes c. Exogenous thiols partially rescue the growth phenotype of the ccs4 mutant concomitant with recovery of holocytochrome f accumulation, as does expression of an ectopic copy of the CCDA gene, encoding a trans-thylakoid transporter of reducing equivalents. We suggest that CCS4 might function to stabilize CCDA or regulate its activity.
Collapse
|
49
|
Yip ES, Burnside DM, Cianciotto NP. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection. MICROBIOLOGY-SGM 2010; 157:868-878. [PMID: 21178169 PMCID: PMC3081086 DOI: 10.1099/mic.0.046490-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events.
Collapse
Affiliation(s)
- Emily S Yip
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Denise M Burnside
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St, Chicago, IL 60611, USA
| |
Collapse
|
50
|
c-type cytochrome assembly in Saccharomyces cerevisiae: a key residue for apocytochrome c1/lyase interaction. Genetics 2010; 186:561-71. [PMID: 20697122 DOI: 10.1534/genetics.110.120022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The electron transport chains in the membranes of bacteria and organelles generate proton-motive force essential for ATP production. The c-type cytochromes, defined by the covalent attachment of heme to a CXXCH motif, are key electron carriers in these energy-transducing membranes. In mitochondria, cytochromes c and c(1) are assembled by the cytochrome c heme lyases (CCHL and CC(1)HL) and by Cyc2p, a putative redox protein. A cytochrome c(1) mutant with a CAPCH heme-binding site instead of the wild-type CAACH is strictly dependent upon Cyc2p for assembly. In this context, we found that overexpression of CC(1)HL, as well as mutations of the proline in the CAPCH site to H, L, S, or T residues, can bypass the absence of Cyc2p. The P mutation was postulated to shift the CXXCH motif to an oxidized form, which must be reduced in a Cyc2p-dependent reaction before heme ligation. However, measurement of the redox midpoint potential of apocytochrome c(1) indicates that neither the P nor the T residues impact the thermodynamic propensity of the CXXCH motif to occur in a disulfide vs. dithiol form. We show instead that the identity of the second intervening residue in the CXXCH motif is key in determining the CCHL-dependent vs. CC(1)HL-dependent assembly of holocytochrome c(1). We also provide evidence that Cyc2p is dedicated to the CCHL pathway and is not required for the CC(1)HL-dependent assembly of cytochrome c(1).
Collapse
|