1
|
Krupovic M, Dolja VV, Koonin EV. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 2023; 8:1008-1017. [PMID: 37127702 PMCID: PMC11130978 DOI: 10.1038/s41564-023-01378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis-the origin of the eukaryotic cell, which remains poorly understood-we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial-not archaeal-viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| |
Collapse
|
2
|
Abstract
The last universal cellular ancestor (LUCA) is the most recent population of organisms from which all cellular life on Earth descends. The reconstruction of the genome and phenotype of the LUCA is a major challenge in evolutionary biology. Given that all life forms are associated with viruses and/or other mobile genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by projecting back in time using the extant distribution of viruses across the two primary domains of life, bacteria and archaea, and tracing the evolutionary histories of some key virus genes, we attempt a reconstruction of the LUCA virome. Even a conservative version of this reconstruction suggests a remarkably complex virome that already included the main groups of extant viruses of bacteria and archaea. We further present evidence of extensive virus evolution antedating the LUCA. The presence of a highly complex virome implies the substantial genomic and pan-genomic complexity of the LUCA itself.
Collapse
|
3
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Cerón-Romero MA, Maurer-Alcalá XX, Grattepanche JD, Yan Y, Fonseca MM, Katz LA. PhyloToL: A Taxon/Gene-Rich Phylogenomic Pipeline to Explore Genome Evolution of Diverse Eukaryotes. Mol Biol Evol 2020; 36:1831-1842. [PMID: 31062861 PMCID: PMC6657734 DOI: 10.1093/molbev/msz103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Estimating multiple sequence alignments (MSAs) and inferring phylogenies are essential for many aspects of comparative biology. Yet, many bioinformatics tools for such analyses have focused on specific clades, with greatest attention paid to plants, animals, and fungi. The rapid increase in high-throughput sequencing (HTS) data from diverse lineages now provides opportunities to estimate evolutionary relationships and gene family evolution across the eukaryotic tree of life. At the same time, these types of data are known to be error-prone (e.g., substitutions, contamination). To address these opportunities and challenges, we have refined a phylogenomic pipeline, now named PhyloToL, to allow easy incorporation of data from HTS studies, to automate production of both MSAs and gene trees, and to identify and remove contaminants. PhyloToL is designed for phylogenomic analyses of diverse lineages across the tree of life (i.e., at scales of >100 My). We demonstrate the power of PhyloToL by assessing stop codon usage in Ciliophora, identifying contamination in a taxon- and gene-rich database and exploring the evolutionary history of chromosomes in the kinetoplastid parasite Trypanosoma brucei, the causative agent of African sleeping sickness. Benchmarking PhyloToL’s homology assessment against that of OrthoMCL and a published paper on superfamilies of bacterial and eukaryotic organellar outer membrane pore-forming proteins demonstrates the power of our approach for determining gene family membership and inferring gene trees. PhyloToL is highly flexible and allows users to easily explore HTS data, test hypotheses about phylogeny and gene family evolution and combine outputs with third-party tools (e.g., PhyloChromoMap, iGTP).
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA
| | - Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Jean-David Grattepanche
- Department of Biological Sciences, Smith College, Northampton, MA.,Biology Department, Temple University, Philadelphia, PA
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - L A Katz
- Department of Biological Sciences, Smith College, Northampton, MA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
5
|
Badillo-Vargas IE, Chen Y, Martin KM, Rotenberg D, Whitfield AE. Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus. J Virol 2019; 93:e00699-19. [PMID: 31413126 PMCID: PMC6803271 DOI: 10.1128/jvi.00699-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Accepted: 08/02/2019] [Indexed: 01/05/2023] Open
Abstract
The plant-pathogenic virus tomato spotted wilt virus (TSWV) encodes a structural glycoprotein (GN) that, like with other bunyavirus/vector interactions, serves a role in viral attachment and possibly in entry into arthropod vector host cells. It is well documented that Frankliniella occidentalis is one of nine competent thrips vectors of TSWV transmission to plant hosts. However, the insect molecules that interact with viral proteins, such as GN, during infection and dissemination in thrips vector tissues are unknown. The goals of this project were to identify TSWV-interacting proteins (TIPs) that interact directly with TSWV GN and to localize the expression of these proteins in relation to virus in thrips tissues of principal importance along the route of dissemination. We report here the identification of six TIPs from first-instar larvae (L1), the most acquisition-efficient developmental stage of the thrips vector. Sequence analyses of these TIPs revealed homology to proteins associated with the infection cycle of other vector-borne viruses. Immunolocalization of the TIPs in L1 revealed robust expression in the midgut and salivary glands of F. occidentalis, the tissues most important during virus infection, replication, and plant inoculation. The TIPs and GN interactions were validated using protein-protein interaction assays. Two of the thrips proteins, endocuticle structural glycoprotein and cyclophilin, were found to be consistent interactors with GN These newly discovered thrips protein-GN interactions are important for a better understanding of the transmission mechanism of persistent propagative plant viruses by their vectors, as well as for developing new strategies of insect pest management and virus resistance in plants.IMPORTANCE Thrips-transmitted viruses cause devastating losses to numerous food crops worldwide. For negative-sense RNA viruses that infect plants, the arthropod serves as a host as well by supporting virus replication in specific tissues and organs of the vector. The goal of this work was to identify thrips proteins that bind directly to the viral attachment protein and thus may play a role in the infection cycle in the insect. Using the model plant bunyavirus tomato spotted wilt virus (TSWV), and the most efficient thrips vector, we identified and validated six TSWV-interacting proteins from Frankliniella occidentalis first-instar larvae. Two proteins, an endocuticle structural glycoprotein and cyclophilin, were able to interact directly with the TSWV attachment protein, GN, in insect cells. The TSWV GN-interacting proteins provide new targets for disrupting the viral disease cycle in the arthropod vector and could be putative determinants of vector competence.
Collapse
Affiliation(s)
| | - Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Pei S, Dong R, He RL, Yau SST. Large-Scale Genome Comparison Based on Cumulative Fourier Power and Phase Spectra: Central Moment and Covariance Vector. Comput Struct Biotechnol J 2019; 17:982-994. [PMID: 31384399 PMCID: PMC6661692 DOI: 10.1016/j.csbj.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Genome comparison is a vital research area of bioinformatics. For large-scale genome comparisons, the Multiple Sequence Alignment (MSA) methods have been impractical to use due to its algorithmic complexity. In this study, we propose a novel alignment-free method based on the one-to-one correspondence between a DNA sequence and its complete central moment vector of the cumulative Fourier power and phase spectra. In addition, the covariance between the four nucleotides in the power and phase spectra is included. We use the cumulative Fourier power and phase spectra to define a 28-dimensional vector for each DNA sequence. Euclidean distances between the vectors can measure the dissimilarity between DNA sequences. We perform testing with datasets of different sizes and types including simulated DNA sequences, exon-intron and complete genomes. The results show that our method is more accurate and efficient for performing hierarchical clustering than other alignment-free methods and MSA methods.
Collapse
Affiliation(s)
- Shaojun Pei
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| | - Rui Dong
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA
| | - Stephen S.-T. Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
7
|
Huang YY, Martínez-del Campo A, Balskus EP. Anaerobic 4-hydroxyproline utilization: Discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes 2018; 9:437-451. [PMID: 29405826 PMCID: PMC6219649 DOI: 10.1080/19490976.2018.1435244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ1-pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Collapse
Affiliation(s)
- Yolanda Y. Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA,CONTACT Emily P. Balskus Commense Inc., 100 Edwin H. Land Blvd, Cambridge, MA 02142
| |
Collapse
|
8
|
Ferreira TG, Trindade CNDR, Bell P, Teixeira-Ferreira A, Perales JE, Vommaro RC, Domingues RMCP, Ferreira EDO. Identification of the alpha-enolase P46 in the extracellular membrane vesicles of Bacteroides fragilis. Mem Inst Oswaldo Cruz 2018; 113:178-184. [PMID: 29412357 PMCID: PMC5804310 DOI: 10.1590/0074-02760170340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Members of the Bacteroides fragilis group are the most important components of the normal human gut microbiome, but are also major opportunistic pathogens that are responsible for significant mortality, especially in the case of bacteraemia and other severe infections, such as intra-abdominal abscesses. Up to now, several virulence factors have been described that might explain the involvement of B. fragilis in these infections. The secretion of extracellular membrane vesicles (EMVs) has been proposed to play a role in pathogenesis and symbiosis in gram-negative bacteria, by releasing soluble proteins and other molecules. In B. fragilis, these vesicles are known to have haemagglutination and sialidosis activities, and also contain a capsular polysaccharide (PSA), although their involvement in virulence is still not clear. OBJECTIVE The aim of this study was to identify proteins in the EMV of the 638R B. fragilis strain by mass spectrometry, and also to assess for the presence of Bfp60, a surface plasminogen (Plg) activator, previously shown in B. fragilis to be responsible for the conversion of inactive Plg to active plasmin, which can also bind to laminin-1. METHODS B. fragilis was cultured in a minimum defined media and EMVs were obtained by differential centrifugation, ultracentrifugation, and filtration. The purified EMVs were observed by both transmission electron microscopy (TEM) and immunoelectron microscopy (IM). To identify EMV constituent proteins, EMVs were separated by 1D SDS-PAGE and proteomic analysis of proteins sized 35 kDa to approximately 65 kDa was performed using mass spectrometry (MALDI-TOF MS). FINDINGS TEM micrographs proved the presence of spherical vesicles and IM confirmed the presence of Bfp60 protein on their surface. Mass spectrometry identified 23 proteins with high confidence. One of the proteins from the B. fragilis EMVs was identified as an enolase P46 with a possible lyase activity. MAIN CONCLUSIONS Although the Bfp60 protein was not detected by proteomics, α-enolase P46 was found to be present in the EMVs of B. fragilis. The P46 protein has been previously described to be present in the outer membrane of B. fragilis as an iron-regulated protein.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Camilla Nunes Dos Reis Trindade
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Petra Bell
- University of Leeds, Faculty of Biological Sciences, School of Biology, Leeds, UK
| | - André Teixeira-Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, RJ, Brasil.,Rede Proteômica do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Jonas E Perales
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxinologia, Rio de Janeiro, RJ, Brasil.,Rede Proteômica do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Rossiane C Vommaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de Janeiro, RJ, Brasil
| | - Regina Maria Cavalcanti Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Médica, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, RJ, Brasil.,Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brasil
| |
Collapse
|
9
|
Kachroo AH, Laurent JM, Akhmetov A, Szilagyi-Jones M, McWhite CD, Zhao A, Marcotte EM. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. eLife 2017; 6:e25093. [PMID: 28661399 PMCID: PMC5536947 DOI: 10.7554/elife.25093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway.
Collapse
Affiliation(s)
- Aashiq H Kachroo
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Jon M Laurent
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Azat Akhmetov
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Madelyn Szilagyi-Jones
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Claire D McWhite
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Alice Zhao
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
10
|
Abstract
A universal Tree of Life (TOL) has long been a goal of molecular phylogeneticists, but reticulation at the level of genes and possibly at the levels of cells and species renders any simple interpretation of such a TOL, especially as applied to prokaryotes, problematic.
Collapse
Affiliation(s)
- W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Tyler D. P. Brunet
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Abstract
Microbes acquire DNA from a variety of sources. The last decades, which have seen the development of genome sequencing, have revealed that horizontal gene transfer has been a major evolutionary force that has constantly reshaped genomes throughout evolution. However, because the history of life must ultimately be deduced from gene phylogenies, the lack of methods to account for horizontal gene transfer has thrown into confusion the very concept of the tree of life. As a result, many questions remain open, but emerging methodological developments promise to use information conveyed by horizontal gene transfer that remains unexploited today.
Collapse
Affiliation(s)
- Vincent Daubin
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, 69000 Lyon, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5558, Université Lyon 1, 69622 Villeurbanne, France
| | | |
Collapse
|
12
|
Abstract
For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Sriram Garg
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Verena Zimorski
- Institute for Molecular Evolution, Universität Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
13
|
Mohanty S, Jobichen C, Chichili VPR, Velázquez-Campoy A, Low BC, Hogue CWV, Sivaraman J. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans. J Biol Chem 2015; 290:27280-27296. [PMID: 26370083 DOI: 10.1074/jbc.m115.677492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase.
Collapse
Affiliation(s)
- Soumya Mohanty
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Adrián Velázquez-Campoy
- the Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit Institute of Physical Chemistry "Rocasolano (IQFR)-Spanish National Research Council (CSIC)-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza and Fundacion ARAID, Government of Aragon, 50018 Zaragoza, Spain
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Christopher W V Hogue
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore,.
| |
Collapse
|
14
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
15
|
Chang CP, Chang CY, Lee YH, Lin YS, Wang CC. Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution. Mol Cell Biol 2015; 35:2242-53. [PMID: 25896914 PMCID: PMC4456443 DOI: 10.1128/mcb.00018-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2015] [Revised: 02/14/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic and mitochondrial forms of a eukaryotic aminoacyl-tRNA synthetase (aaRS) are generally encoded by two distinct nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. However, in most known yeasts, only the mitochondrial-origin alanyl-tRNA synthetase (AlaRS) gene is retained and plays a dual-functional role. Here, we present a novel scenario of AlaRS evolution in the yeast Vanderwaltozyma polyspora. V. polyspora possesses two significantly diverged AlaRS gene homologues, one encoding the cytoplasmic form and the other its mitochondrial counterpart. Clever selection of transcription and translation initiation sites enables the two isoforms to be localized and thus functional in their respective cellular compartments. However, the two isoforms can also be stably expressed and function in the reciprocal compartments by insertion or removal of a mitochondrial targeting signal. Synteny and phylogeny analyses revealed that the AlaRS homologues of V. polyspora arose from a dual-functional common ancestor through whole-genome duplication (WGD). Moreover, the mitochondrial form had higher synonymous (1.6-fold) and nonsynonymous (2.8-fold) substitution rates than did its cytoplasmic counterpart, presumably due to a lesser constraint imposed on components of the mitochondrial translational apparatus. Our study suggests that asymmetric evolution confers the divergence between the AlaRS paralogues of V. polyspora.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Chih-Yao Chang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Yi-Hsueh Lee
- Department of Life Sciences, National Central University, Jungli, Taiwan
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli, Taiwan
| |
Collapse
|
16
|
Wang WX, Li KL, Chen Y, Lai FX, Fu Q. Identification and Function Analysis of enolase Gene NlEno1 from Nilaparvata lugens (Stål) (Hemiptera:Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev046. [PMID: 26056319 PMCID: PMC4535590 DOI: 10.1093/jisesa/iev046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
The enolase [EC 4.2.1.11] is an essential enzyme in the glycolytic pathway catalyzing the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP). In this study, a full-length cDNA encoding α-enolase was cloned from rice brown planthopper (Nilaparvata lugens) and is provisionally designated as NlEno1. The cDNA sequence of NlEno1 was 1,851 bp with an open reading frame (ORF) of 1,305 bp and encoding 434 amino acids. The deduced protein shares high identity of 80-87% with ENO1-like protein from Hemiptera, Diptera, and Lepidoptera speices. The NlEno1 showed the highest mRNA expression level in hemolymph, followed by fat body, salivary gland, ovaries and egg, and showed trace mRNA levels in testis. The mRNA of NlEno1 showed up-regulated level in virulent N. lugens population Mudgo, IR56 and IR42 when compared with TN1 population. Injection of double-stranded RNA (dsRNA) of NlEno1 into the adults significantly down-regulated the NlEno1 mRNA level along with decreased eggs and offspring. Moreover, injection of NlEno1-dsRNA decreased mRNA level of Vitellogenin (Vg) gene. These results showed that the NlEno1, as a key glycolytic enzyme, may play roles in regulation of fecundity and adaptation of N. lugens to resistant rice varieties.
Collapse
Affiliation(s)
- Wei-Xia Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Kai-Long Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Yang Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Feng-Xiang Lai
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| | - Qiang Fu
- State Key Lab of Rice Biology, China National Rice Research Institute, Tiyuchang Road 359, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
17
|
Koonin EV, Dolja VV, Krupovic M. Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology 2015; 479-480:2-25. [PMID: 25771806 PMCID: PMC5898234 DOI: 10.1016/j.virol.2015.02.039] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/04/2023]
Abstract
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015, France.
| |
Collapse
|
18
|
Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 2015; 112:10139-46. [PMID: 25733873 DOI: 10.1073/pnas.1421385112] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.
Collapse
|
19
|
Koonin EV, Krupovic M, Yutin N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann N Y Acad Sci 2015; 1341:10-24. [PMID: 25727355 PMCID: PMC4405056 DOI: 10.1111/nyas.12728] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
20
|
Abstract
BACKGROUND Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. RESULTS Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. CONCLUSIONS The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.
Collapse
|
21
|
Feng JM, Tian HF, Wen JF. Origin and evolution of the eukaryotic SSU processome revealed by a comprehensive genomic analysis and implications for the origin of the nucleolus. Genome Biol Evol 2014; 5:2255-67. [PMID: 24214024 PMCID: PMC3879963 DOI: 10.1093/gbe/evt173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
As a nucleolar complex for small-subunit (SSU) ribosomal RNA processing, SSU processome
has been extensively studied mainly in Saccharomyces cerevisiae but not
in diverse organisms, leaving open the question of whether it is a ubiquitous mechanism
across eukaryotes and how it evolved in the course of the evolution of eukaryotes.
Genome-wide survey and identification of SSU processome components showed that the
majority of all 77 yeast SSU processome proteins possess homologs in almost all of the
main eukaryotic lineages, and 14 of them have homologs in archaea but few in bacteria,
suggesting that the complex is ubiquitous in eukaryotes, and its evolutionary history
began with abundant protein homologs being present in archaea and then a fairly complete
form of the complex emerged in the last eukaryotic common ancestor (LECA). Phylogenetic
analysis indicated that ancient gene duplication and functional divergence of the protein
components of the complex occurred frequently during the evolutionary origin of the LECA
from prokaryotes. We found that such duplications not only increased the complex’s
components but also produced some new functional proteins involved in other nucleolar
functions, such as ribosome biogenesis and even some nonnucleolar (but nuclear) proteins
participating in pre-mRNA splicing, implying the evolutionary emergence of the subnuclear
compartment—the nucleolus—has occurred in the LECA. Therefore, the LECA
harbored not only complicated SSU processomes but also a nucleolus. Our analysis also
revealed that gene duplication, innovation, and loss, caused further divergence of the
complex during the divergence of eukaryotes.
Collapse
Affiliation(s)
- Jin-Mei Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | |
Collapse
|
22
|
Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology 2014; 466-467:38-52. [PMID: 25042053 DOI: 10.1016/j.virol.2014.06.032] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2014] [Revised: 06/14/2014] [Accepted: 06/21/2014] [Indexed: 11/27/2022]
Abstract
The numerous and diverse eukaryotic viruses with large double-stranded DNA genomes that at least partially reproduce in the cytoplasm of infected cells apparently evolved from a single virus ancestor. This major group of viruses is known as Nucleocytoplasmic Large DNA Viruses (NCLDV) or the proposed order Megavirales. Among the "Megavirales", there are three groups of giant viruses with genomes exceeding 500kb, namely Mimiviruses, Pithoviruses, and Pandoraviruses that hold the current record of viral genome size, about 2.5Mb. Phylogenetic analysis of conserved, ancestral NLCDV genes clearly shows that these three groups of giant viruses have three distinct origins within the "Megavirales". The Mimiviruses constitute a distinct family that is distantly related to Phycodnaviridae, Pandoraviruses originate from a common ancestor with Coccolithoviruses within the Phycodnaviridae family, and Pithoviruses are related to Iridoviridae and Marseilleviridae. Maximum likelihood reconstruction of gene gain and loss events during the evolution of the "Megavirales" indicates that each group of giant viruses evolved from viruses with substantially smaller and simpler gene repertoires. Initial phylogenetic analysis of universal genes, such as translation system components, encoded by some giant viruses, in particular Mimiviruses, has led to the hypothesis that giant viruses descend from a fourth, probably extinct domain of cellular life. The results of our comprehensive phylogenomic analysis of giant viruses refute the fourth domain hypothesis and instead indicate that the universal genes have been independently acquired by different giant viruses from their eukaryotic hosts.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Guy L, Saw JH, Ettema TJG. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016022. [PMID: 24993577 DOI: 10.1101/cshperspect.a016022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
The origin of the eukaryotic cell can be regarded as one of the hallmarks in the history of life on our planet. The apparent genomic chimerism in eukaryotic genomes is currently best explained by invoking a cellular fusion at the root of the eukaryotes that involves one archaeal and one or more bacterial components. Here, we use a phylogenomics approach to reevaluate the evolutionary affiliation between Archaea and eukaryotes, and provide further support for scenarios in which the nuclear lineage in eukaryotes emerged from within the archaeal radiation, displaying a strong phylogenetic affiliation with, or even within, the archaeal TACK superphylum. Further taxonomic sampling of archaeal genomes in this superphylum will certainly provide a better resolution in the events that have been instrumental for the emergence of the eukaryotic lineage.
Collapse
Affiliation(s)
- Lionel Guy
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Jimmy H Saw
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
24
|
Towards a computational model of a methane producing archaeum. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:898453. [PMID: 24729742 PMCID: PMC3960522 DOI: 10.1155/2014/898453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/14/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022]
Abstract
Progress towards a complete model of the methanogenic archaeum Methanosarcina acetivorans is reported. We characterized size distribution of the cells using differential interference contrast microscopy, finding them to be ellipsoidal with mean length and width of 2.9 μm and 2.3 μm, respectively, when grown on methanol and 30% smaller when grown on acetate. We used the single molecule pull down (SiMPull) technique to measure average copy number of the Mcr complex and ribosomes. A kinetic model for the methanogenesis pathways based on biochemical studies and recent metabolic reconstructions for several related methanogens is presented. In this model, 26 reactions in the methanogenesis pathways are coupled to a cell mass production reaction that updates enzyme concentrations. RNA expression data (RNA-seq) measured for cell cultures grown on acetate and methanol is used to estimate relative protein production per mole of ATP consumed. The model captures the experimentally observed methane production rates for cells growing on methanol and is most sensitive to the number of methyl-coenzyme-M reductase (Mcr) and methyl-tetrahydromethanopterin:coenzyme-M methyltransferase (Mtr) proteins. A draft transcriptional regulation network based on known interactions is proposed which we intend to integrate with the kinetic model to allow dynamic regulation.
Collapse
|
25
|
Keeling PJ. The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity. Cold Spring Harb Perspect Biol 2014; 6:a016196. [PMID: 24492708 PMCID: PMC3941238 DOI: 10.1101/cshperspect.a016196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
Evolutionary hypotheses are correctly interpreted as products of the data they set out to explain, but they are less often recognized as being heavily influenced by other factors. One of these is the history of preceding thought, and here I look back on historically important changes in our thinking about the role of endosymbiosis in the origin of eukaryotic cells. Specifically, the modern emphasis on endosymbiotic explanations for numerous eukaryotic features, including the cell itself (the so-called chimeric hypotheses), can be seen not only as resulting from the advent of molecular and genomic data, but also from the intellectual acceptance of the endosymbiotic origin of mitochondria and plastids. This transformative idea may have unduly affected how other aspects of the eukaryotic cell are explained, in effect priming us to accept endosymbiotic explanations for endogenous processes. Molecular and genomic data, which were originally harnessed to answer questions about cell evolution, now so dominate our thinking that they largely define the question, and the original questions about how eukaryotic cellular architecture evolved have been neglected. This is unfortunate because, as Roger Stanier pointed out, these cellular changes represent life's "greatest single evolutionary discontinuity," and on this basis I advocate a return to emphasizing evolutionary cell biology when thinking about the origin of eukaryotes, and suggest that endogenous explanations will prevail when we refocus on the evolution of the cell.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
26
|
Lu B, Yang W, Dai Q, Fu J. Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles. PLoS One 2013; 8:e79348. [PMID: 24278129 PMCID: PMC3836853 DOI: 10.1371/journal.pone.0079348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from different studies are likely a consequence of systematic error in the tree construction process, rather than random error from small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional concatenated data analysis and a "genes as characters" approach. Two datasets were constructed, one with seven species (human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog) and 4584 orthologous genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara) but only 1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur hypothesis), similar to several recent genomic data based studies using similar methods. When using genes as characters and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model selection. Finally, treating genes as characters provides a convenient method for examining gene and genome evolution.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
27
|
Bukhari SA, Caetano-Anollés G. Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes. PLoS Comput Biol 2013; 9:e1003009. [PMID: 23555236 PMCID: PMC3610613 DOI: 10.1371/journal.pcbi.1003009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022] Open
Abstract
The spatial arrangements of secondary structures in proteins, irrespective of their connectivity, depict the overall shape and organization of protein domains. These features have been used in the CATH and SCOP classifications to hierarchically partition fold space and define the architectural make up of proteins. Here we use phylogenomic methods and a census of CATH structures in hundreds of genomes to study the origin and diversification of protein architectures (A) and their associated topologies (T) and superfamilies (H). Phylogenies that describe the evolution of domain structures and proteomes were reconstructed from the structural census and used to generate timelines of domain discovery. Phylogenies of CATH domains at T and H levels of structural abstraction and associated chronologies revealed patterns of reductive evolution, the early rise of Archaea, three epochs in the evolution of the protein world, and patterns of structural sharing between superkingdoms. Phylogenies of proteomes confirmed the early appearance of Archaea. While these findings are in agreement with previous phylogenomic studies based on the SCOP classification, phylogenies unveiled sharing patterns between Archaea and Eukarya that are recent and can explain the canonical bacterial rooting typically recovered from sequence analysis. Phylogenies of CATH domains at A level uncovered general patterns of architectural origin and diversification. The tree of A structures showed that ancient structural designs such as the 3-layer (αβα) sandwich (3.40) or the orthogonal bundle (1.10) are comparatively simpler in their makeup and are involved in basic cellular functions. In contrast, modern structural designs such as prisms, propellers, 2-solenoid, super-roll, clam, trefoil and box are not widely distributed and were probably adopted to perform specialized functions. Our timelines therefore uncover a universal tendency towards protein structural complexity that is remarkable.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
28
|
Wang Y, Li E, Yu N, Wang X, Cai C, Tang B, Chen L, Van Wormhoudt A. Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis. PLoS One 2012; 7:e37316. [PMID: 22615974 PMCID: PMC3355100 DOI: 10.1371/journal.pone.0037316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2012] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Background Glutamate dehydrogenase (GDH) is a key enzyme for the synthesis and catabolism of glutamic acid, proline and alanine, which are important osmolytes in aquatic animals. However, the response of GDH gene expression to salinity alterations has not yet been determined in macro-crustacean species. Methodology/Principal Findings GDH cDNA was isolated from Eriocheir sinensis. Then, GDH gene expression was analyzed in different tissues from normal crabs and the muscle of crabs following transfer from freshwater (control) directly to water with salinities of 16‰ and 30‰, respectively. Full-length GDH cDNA is 2,349 bp, consisting of a 76 bp 5′- untranslated region, a 1,695 bp open reading frame encoding 564 amino acids and a 578 bp 3′- untranslated region. E. sinensis GDH showed 64–90% identity with protein sequences of mammalian and crustacean species. Muscle was the dominant expression source among all tissues tested. Compared with the control, GDH expression significantly increased at 6 h in crabs transferred to 16‰ and 30‰ salinity, and GDH expression peaked at 48 h and 12 h, respectively, with levels approximately 7.9 and 8.5 fold higher than the control. The free amino acid (FAA) changes in muscle, under acute salinity stress (16‰ and 30‰ salinities), correlated with GDH expression levels. Total FAA content in the muscle, which was based on specific changes in arginine, proline, glycine, alanine, taurine, serine and glutamic acid, tended to increase in crabs following transfer to salt water. Among these, arginine, proline and alanine increased significantly during salinity acclimation and accounted for the highest proportion of total FAA. Conclusions E. sinensis GDH is a conserved protein that serves important functions in controlling osmoregulation. We observed that higher GDH expression after ambient salinity increase led to higher FAA metabolism, especially the synthesis of glutamic acid, which increased the synthesis of proline and alanine to meet the demand of osmoregulation at hyperosmotic conditions.
Collapse
Affiliation(s)
- Yueru Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Erchao Li
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (EL); (LC)
| | - Na Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- School of Life Science, East China Normal University, Shanghai, China
| | - Chunfang Cai
- School of Basic Medicine and Biological Science, Soochow University, Suzhou, China
| | - Boping Tang
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Basic Medicine and Biological Science, Yancheng Teachers University, Yancheng, China
| | - Liqiao Chen
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (EL); (LC)
| | - Alain Van Wormhoudt
- UMR5178, Station de Biologie Marine du Muséum National d'Histoire Naturelle, BP225, Concarneau, France
| |
Collapse
|
29
|
Chen SJ, Wu YH, Huang HY, Wang CC. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS One 2012; 7:e33363. [PMID: 22438917 PMCID: PMC3306390 DOI: 10.1371/journal.pone.0033363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2011] [Accepted: 02/13/2012] [Indexed: 12/04/2022] Open
Abstract
Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower KM value for yeast tRNAGly under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37°C, but not at the optimal temperature of 30°C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jung-li, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Thiergart T, Landan G, Schenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 2012; 4:466-85. [PMID: 22355196 PMCID: PMC3342870 DOI: 10.1093/gbe/evs018] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a dialect cognizant of gene transfer in nature.
Collapse
Affiliation(s)
- Thorsten Thiergart
- Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
31
|
Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME JOURNAL 2012; 6:1403-14. [PMID: 22278668 PMCID: PMC3379637 DOI: 10.1038/ismej.2011.201] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.
Collapse
|
32
|
McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM. Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 2011; 33:810-7. [PMID: 21858844 PMCID: PMC3795523 DOI: 10.1002/bies.201100045] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 11/11/2022]
Abstract
Planctomycetes, Verrucomicrobia and Chlamydia are prokaryotic phyla, sometimes grouped together as the PVC superphylum of eubacteria. Some PVC species possess interesting attributes, in particular, internal membranes that superficially resemble eukaryotic endomembranes. Some biologists now claim that PVC bacteria are nucleus-bearing prokaryotes and are considered evolutionary intermediates in the transition from prokaryote to eukaryote. PVC prokaryotes do not possess a nucleus and are not intermediates in the prokaryote-to-eukaryote transition. Here we summarise the evidence that shows why all of the PVC traits that are currently cited as evidence for aspiring eukaryoticity are either analogous (the result of convergent evolution), not homologous, to eukaryotic traits; or else they are the result of horizontal gene transfers.
Collapse
Affiliation(s)
- James O McInerney
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The cytoskeleton is a system of intracellular filaments crucial for cell shape, division, and function in all three domains of life. The simple cytoskeletons of prokaryotes show surprising plasticity in composition, with none of the core filament-forming proteins conserved in all lineages. In contrast, eukaryotic cytoskeletal function has been hugely elaborated by the addition of accessory proteins and extensive gene duplication and specialization. Much of this complexity evolved before the last common ancestor of eukaryotes. The distribution of cytoskeletal filaments puts constraints on the likely prokaryotic line that made this leap of eukaryogenesis.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, England, UK.
| | | |
Collapse
|
34
|
Chang CP, Tseng YK, Ko CY, Wang CC. Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 2011; 40:314-22. [PMID: 21908394 PMCID: PMC3245939 DOI: 10.1093/nar/gkr724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the cytoplasmic and mitochondrial forms of a given aminoacyl-tRNA synthetase (aaRS) are typically encoded by two orthologous nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. We herein report a novel scenario of aaRS evolution in yeast. While all other yeast species studied possess a single nuclear gene encoding both forms of alanyl-tRNA synthetase (AlaRS), Vanderwaltozyma polyspora, a yeast species descended from the same whole-genome duplication event as Saccharomyces cerevisiae, contains two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. The protein sequences of these two isoforms are very similar to each other. The isoforms are actively expressed in vivo and are exclusively localized in their respective cellular compartments. Despite the presence of a promising AUG initiator candidate, the gene encoding the mitochondrial form is actually initiated from upstream non-AUG codons. A phylogenetic analysis further revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These findings underscore the possibility that contemporary AlaRS genes in V. polyspora arose relatively recently from duplication of a dual-functional predecessor of mitochondrial origin.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Sciences, National Central University, Jungli 32001, Taiwan
| | | | | | | |
Collapse
|
35
|
Secondary structure determination by FTIR of an archaeal ubiquitin-like polypeptide from Natrialba magadii. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1101-7. [PMID: 21701865 DOI: 10.1007/s00249-011-0719-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 01/06/2023]
Abstract
The ubiquitin protein belongs to the β-grasp fold family, characterized by four or five β-sheets with a single α-helical middle region. Ubiquitin-like proteins (Ubls) are structural homologues with low sequence identity to ubiquitin and are widespread among both eukaryotes and prokaryotes. We previously demonstrated by bioinformatics that P400, a polypeptide from the haloalkaliphilic archaeon Natrialba magadii, has structural homology with both ubiquitin and Ubls. This work examines the secondary structure of P400 by Fourier transform infrared spectroscopy (FTIR). After expression in Escherichia coli, recombinant P400 (rP400) was separated by PAGE and eluted pure from zinc-imidazole reversely stained gels. The requirement of high salt concentration of this polypeptide to be folded was corroborated by intrinsic fluorescence spectrum. Our results show that fluorescence spectra of rP400 in 1.5 M KCl buffer shifts and decreases after thermal denaturation as well as after chemical treatment. rP400 was lyophilized and rehydrated in buffer containing 1.5 M KCl before both immunochemical and FTIR tests were performed. It was found that rP400 reacts with anti-ubiquitin antibody after rehydration in the presence of high salt concentrations. On the other hand, like ubiquitin and Ubls, the amide I' band for rP400 shows 10% more of its sequence to be involved in β-sheet structures than in α-helix. These findings suggest that P400 is a structural homologue of the ubiquitin family proteins.
Collapse
|
36
|
Kelly S, Wickstead B, Gull K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc Biol Sci 2011; 278:1009-18. [PMID: 20880885 PMCID: PMC3049024 DOI: 10.1098/rspb.2010.1427] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2010] [Accepted: 09/06/2010] [Indexed: 11/12/2022] Open
Abstract
We have developed a machine-learning approach to identify 3537 discrete orthologue protein sequence groups distributed across all available archaeal genomes. We show that treating these orthologue groups as binary detection/non-detection data is sufficient to capture the majority of archaeal phylogeny. We subsequently use the sequence data from these groups to infer a method and substitution-model-independent phylogeny. By holding this phylogeny constrained and interrogating the intersection of this large dataset with both the Eukarya and the Bacteria using Bayesian and maximum-likelihood approaches, we propose and provide evidence for a methanogenic origin of the Archaea. By the same criteria, we also provide evidence in support of an origin for Eukarya either within or as sisters to the Thaumarchaea.
Collapse
Affiliation(s)
- S Kelly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
37
|
Rodríguez-Narciso C, Pérez-Tapia M, Rangel-Cano RM, Silva CL, Meckes-Fisher M, Salgado-Garciglia R, Estrada-Parra S, López-Gómez R, Estrada-García I. Expression of Mycobacterium leprae HSP65 in tobacco and its effectiveness as an oral treatment in adjuvant-induced arthritis. Transgenic Res 2011; 20:221-9. [PMID: 20526808 DOI: 10.1007/s11248-010-9404-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2009] [Accepted: 05/13/2010] [Indexed: 12/22/2022]
Abstract
Transgenic plants are able to express molecules with antigenic properties. In recent years, this has led the pharmaceutical industry to use plants as alternative systems for the production of recombinant proteins. Plant-produced recombinant proteins can have important applications in therapeutics, such as in the treatment of rheumatoid arthritis (RA). In this study, the mycobacterial HSP65 protein expressed in tobacco plants was found to be effective as a treatment for adjuvant-induced arthritis (AIA). We cloned the hsp65 gene from Mycobacterium leprae into plasmid pCAMBIA 2301 under the control of the double 35S promoter from cauliflower mosaic virus. Agrobacterium tumefaciens bearing the pChsp65 plasmid was used to transform tobacco plants. Incorporation of the hsp65 gene was confirmed by PCR, reverse transcription-PCR, histochemistry, and western blot analyses in several transgenic lines of tobacco plants. Oral treatment of AIA rats with the HSP65 protein allowed them to recover body weight and joint inflammation was reduced. Our results suggest a synergistic effect between the HSP65 expressed protein and metabolites presents in tobacco plants.
Collapse
Affiliation(s)
- César Rodríguez-Narciso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Francisco J Mújica S/N Col. Felicitas del Rio, CP 58060, Morelia, Michoacán, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The species is a fundamental unit of biological organization, but its relevance for Bacteria and Archaea is still hotly debated. Even more controversial is whether the deeper branches of the ribosomal RNA-derived phylogenetic tree, such as the phyla, have ecological importance. Here, we discuss the ecological coherence of high bacterial taxa in the light of genome analyses and present examples of niche differentiation between deeply diverging groups in terrestrial and aquatic systems. The ecological relevance of high bacterial taxa has implications for bacterial taxonomy, evolution and ecology.
Collapse
|
39
|
Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 2010; 8:743-52. [PMID: 20844558 DOI: 10.1038/nrmicro2426] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
The origin of eukaryotes and their evolutionary relationship with the Archaea is a major biological question and the subject of intense debate. In the context of the classical view of the universal tree of life, the Archaea and the Eukarya have a common ancestor, the nature of which remains undetermined. Alternative views propose instead that the Eukarya evolved directly from a bona fide archaeal lineage. Several recent large-scale phylogenomic studies using an array of approaches are divided in supporting either one or the other scenario, despite analysing largely overlapping data sets of universal genes. We examine the reasons for such a lack of consensus and consider how alternative approaches may enable progress in answering this fascinating and as-yet-unresolved question.
Collapse
|
40
|
Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. Proc Natl Acad Sci U S A 2010; 107:17252-5. [PMID: 20852068 DOI: 10.1073/pnas.1000265107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The traditional tree of life shows eukaryotes as a distinct lineage of living things, but many studies have suggested that the first eukaryotic cells were chimeric, descended from both Eubacteria (through the mitochondrion) and Archaebacteria. Eukaryote nuclei thus contain genes of both eubacterial and archaebacterial origins, and these genes have different functions within eukaryotic cells. Here we report that archaebacterium-derived genes are significantly more likely to be essential to yeast viability, are more highly expressed, and are significantly more highly connected and more central in the yeast protein interaction network. These findings hold irrespective of whether the genes have an informational or operational function, so that many features of eukaryotic genes with prokaryotic homologs can be explained by their origin, rather than their function. Taken together, our results show that genes of archaebacterial origin are in some senses more important to yeast metabolism than genes of eubacterial origin. This importance reflects these genes' origin as the ancestral nuclear component of the eukaryotic genome.
Collapse
|
41
|
Khrustalev VV, Barkovsky EV. Study of completed archaeal genomes and proteomes: hypothesis of strong mutational AT pressure existed in their common predecessor. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 8:22-32. [PMID: 20451159 PMCID: PMC5054120 DOI: 10.1016/s1672-0229(10)60003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
The number of completely sequenced archaeal genomes has been sufficient for a large-scale bioinformatic study. We have conducted analyses for each coding region from 36 archaeal genomes using the original CGS algorithm by calculating the total GC content (G+C), GC content in first, second and third codon positions as well as in fourfold and twofold degenerated sites from third codon positions, levels of arginine codon usage (Arg2: AGA/G; Arg4: CGX), levels of amino acid usage and the entropy of amino acid content distribution. In archaeal genomes with strong GC pressure, arginine is coded preferably by GC-rich Arg4 codons, whereas in most of archaeal genomes with G+C<0.6, arginine is coded preferably by AT-rich Arg2 codons. In the genome of Haloquadratum walsbyi, which is closely related to GC-rich archaea, GC content has decreased mostly in third codon positions, while Arg4>>Arg2 bias still persists. Proteomes of archaeal species carry characteristic amino acid biases: levels of isoleucine and lysine are elevated, while levels of alanine, histidine, glutamine and cytosine are relatively decreased. Numerous genomic and proteomic biases observed can be explained by the hypothesis of previously existed strong mutational AT pressure in the common predecessor of all archaea.
Collapse
Affiliation(s)
- Vladislav V Khrustalev
- Department of General Chemistry, Belarussian State Medical University, Minsk 220116, Belarus.
| | | |
Collapse
|
42
|
Ghoshroy S, Binder M, Tartar A, Robertson DL. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution. BMC Evol Biol 2010; 10:198. [PMID: 20579371 PMCID: PMC2978018 DOI: 10.1186/1471-2148-10-198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2009] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from gamma-Proteobacteria (Eubacteria) to the Chloroplastida. RESULTS GSII sequences were isolated from four species of green algae (Trebouxiophyceae), and additional green algal (Chlorophyceae and Prasinophytae) and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta) sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB) and eukaryotic (GSIIE) GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the gamma-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT). Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida). However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting a cytosolic function. GSIIB sequences were absent in vascular plants where the duplication of GSIIE replaced the function of GSIIB. CONCLUSIONS Phylogenetic evidence suggests GSIIB in Chloroplastida evolved by HGT, possibly after the divergence of the primary endosymbiotic lineages. Thus while multiple GS isoenzymes are common among members of the Chloroplastida, the isoenzymes may have evolved via different evolutionary processes. The acquisition of essential enzymes by HGT may provide rapid changes in biochemical capacity and therefore be favored by natural selection.
Collapse
Affiliation(s)
- Sohini Ghoshroy
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Manfred Binder
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| | - Aurélien Tartar
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Deborah L Robertson
- Clark University, Biology Department, 950, Main Street, Worcester, MA 01610, USA
| |
Collapse
|
43
|
Chattopadhyay S, Sahoo S, Kanner WA, Chakrabarti J. Pressures in archaeal protein coding genes: a comparative study. Comp Funct Genomics 2010; 4:56-65. [PMID: 18629113 PMCID: PMC2447400 DOI: 10.1002/cfg.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2002] [Accepted: 11/25/2002] [Indexed: 11/06/2022] Open
Abstract
Our studies on the bases of codons from 11 completely sequenced archaeal genomes show that, as we move from GC-rich to AT-rich protein-coding gene-containing species, the differences between G and C and between A and T, the purine load (AG content), and also the overall persistence (i.e. the tendency of a base to be followed by the same base) within codons, all increase almost simultaneously, although the extent of increase is different over the three positions within codons. These findings suggest that the deviations from the second parity rule (through the increasing differences between complementary base contents) and the increasing purine load hinder the chance of formation of the intra-strand Watson-Crick base-paired secondary structures in mRNAs (synonymous with the protein-coding genes we dealt with), thereby increasing the translational efficiency. We hypothesize that the ATrich protein-coding gene-containing archaeal species might have better translational efficiency than their GC-rich counterparts.
Collapse
Affiliation(s)
- Sujay Chattopadhyay
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India.
| | | | | | | |
Collapse
|
44
|
Abstract
It is proposed that the precellular stage of biological evolution unraveled within networks of inorganic compartments that harbored a diverse mix of virus‐like genetic elements. This stage of evolution might makes up the Last Universal Cellular Ancestor (LUCA) that more appropriately could be denoted Last Universal Cellular Ancestral State (LUCAS). Such a scenario recapitulates the ideas of J. B. S. Haldane sketched in his classic 1928 essay. However, unlike in Haldane's day, considerable support for this scenario exits today: lack of homology between core DNA replication system components in archaea and bacteria, distinct membrane chemistries and enzymes of lipid biosynthesis in archaea and bacteria, spread of several viral hallmark genes among diverse groups of viruses, and the extant archaeal and bacterial chromosomes appear to be shaped by accretion of diverse, smaller replicons. Under the viral model of precellular evolution, the key components of cells originated as components of virus‐like entities. The two surviving types of cellular life forms, archaea and bacteria, might have emerged from the LUCAS independently, along with, probably, numerous forms now extinct.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
45
|
Tekle YI, Parfrey LW, Katz LA. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes. Bioscience 2009; 59:471-481. [PMID: 20842214 DOI: 10.1525/bio.2009.59.6.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene and, increasingly, whole genome sequences. By combining these approaches, progress has been made in elucidating both the origin and diversification of eukaryotes. Yet many aspects of the evolution of eukaryotic life remain to be illuminated.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | | | | |
Collapse
|
46
|
Hayward D, van Helden PD, Wiid IJF. Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evol Biol 2009; 9:48. [PMID: 19245690 PMCID: PMC2667176 DOI: 10.1186/1471-2148-9-48] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2008] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the gene encoding for glutamine synthetase (glnA) is essential in several organisms, multiple glnA copies have been identified in bacterial genomes such as those of the phylum Actinobacteria, notably the mycobacterial species. Intriguingly, previous reports have shown that only one copy (glnA1) is essential for growth in M. tuberculosis, while the other copies (glnA2, glnA3 and glnA4) are not. RESULTS In this report it is shown that the glnA1 and glnA2 encoded glutamine synthetase sequences were inherited from an Actinobacteria ancestor, while the glnA4 and glnA3 encoded GS sequences were sequentially acquired during Actinobacteria speciation. The glutamine synthetase sequences encoded by glnA4 and glnA3 are undergoing reductive evolution in the mycobacteria, whilst those encoded by glnA1 and glnA2 are more conserved. CONCLUSION Different selective pressures by the ecological niche that the organisms occupy may influence the sequence evolution of glnA1 and glnA2 and thereby affecting phylogenies based on the protein sequences they encode. The findings in this report may impact the use of similar sequences as molecular markers, as well as shed some light on the evolution of glutamine synthetase in the mycobacteria.
Collapse
Affiliation(s)
- Don Hayward
- DST/NRF Centre for Excellence in Biomedical Tuberculosis Research, US/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences - Stellenbosch University, South Africa.
| | | | | |
Collapse
|
47
|
Abstract
In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated to such a degree that many bacteriologists now question the very existence of bacterial species. If gene transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacterial isolates that share complex phenotypic properties. The Core Genome Hypothesis (CGH) has been proposed to explain this apparent paradox of fluid bacterial genomes associated with stable phenotypic clusters. It posits that there is a core of genes responsible for maintaining the species-specific phenotypic clusters observed throughout bacterial diversity and argues that, even in the face of substantial genomic fluidity, bacterial species can be rationally identified and named.
Collapse
Affiliation(s)
- Margaret A Riley
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | | |
Collapse
|
48
|
Horiike T, Miyata D, Hamada K, Saruhashi S, Shinozawa T, Kumar S, Chakraborty R, Komiyama T, Tateno Y. Phylogenetic construction of 17 bacterial phyla by new method and carefully selected orthologs. Gene 2008; 429:59-64. [PMID: 19000750 DOI: 10.1016/j.gene.2008.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2008] [Revised: 10/03/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
Here, we constructed a phylogenetic tree of 17 bacterial phyla covering eubacteria and archaea by using a new method and 102 carefully selected orthologs from their genomes. One of the serious disturbing factors in phylogeny construction is the existence of out-paralogs that cannot easily be found out and discarded. In our method, out-paralogs are detected and removed by constructing a phylogenetic tree of the genes in question and examining the clustered genes in the tree. We also developed a method for comparing two tree topologies or shapes, ComTree. Applying ComTree to the constructed tree we computed the relative number of orthologs that support a node of the tree. This number is called the Positive Ortholog Ratio (POR), which is conceptually and methodologically different from the frequently used bootstrap value. Our study concretely shows drawbacks of the bootstrap test. Our result of bacterial phylogeny analysis is consistent with previous ones showing that hyperthermophilic bacteria such as Thermotogae and Aquificae diverged earlier than the others in the eubacterial phylogeny studied. It is noted that our results are consistent whether thermophilic archaea or mesophilic archaea is employed for determining the root of the tree. The earliest divergence of hyperthermophilic eubacteria is supported by genes involved in fundamental metabolic processes such as glycolysis, nucleotide and amino acid syntheses.
Collapse
Affiliation(s)
- Tokumasa Horiike
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lal S, Cheema S, Kalia VC. Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 2008; 48:228-42. [PMID: 23100716 PMCID: PMC3450171 DOI: 10.1007/s12088-008-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022] Open
Abstract
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.
Collapse
Affiliation(s)
- Sadhana Lal
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Simrita Cheema
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| |
Collapse
|
50
|
Abstract
Thermophilic viruses were reported decades ago; however, knowledge of their diversity, biology, and ecological impact is limited. Previous research on thermophilic viruses focused on cultivated strains. This study examined metagenomic profiles of viruses directly isolated from two mildly alkaline hot springs, Bear Paw (74 degrees C) and Octopus (93 degrees C). Using a new method for constructing libraries from picograms of DNA, nearly 30 Mb of viral DNA sequence was determined. In contrast to previous studies, sequences were assembled at 50% and 95% identity, creating composite contigs up to 35 kb and facilitating analysis of the inherent heterogeneity in the populations. Lowering the assembly identity reduced the estimated number of viral types from 1,440 and 1,310 to 548 and 283, respectively. Surprisingly, the diversity of viral species in these springs approaches that in moderate-temperature environments. While most known thermophilic viruses have a chronic, nonlytic infection lifestyle, analysis of coding sequences suggests lytic viruses are more common in geothermal environments than previously thought. The 50% assembly included one contig with high similarity and perfect synteny to nine genes from Pyrobaculum spherical virus (PSV). In fact, nearly all the genes of the 28-kb genome of PSV have apparent homologs in the metagenomes. Similarities to thermoacidophilic viruses isolated on other continents were limited to specific open reading frames but were equally strong. Nearly 25% of the reads showed significant similarity between the hot springs, suggesting a common subterranean source. To our knowledge, this is the first application of metagenomics to viruses of geothermal origin.
Collapse
|