1
|
Basak P, Dastidar DG, Ghosh D, Chakraborty T, Sau S, Chakrabarti G. Staphylococcus aureus major cell division protein FtsZ assembly is inhibited by silibinin, a natural flavonolignan that also blocked bacterial growth and biofilm formation. Int J Biol Macromol 2024; 279:135252. [PMID: 39222779 DOI: 10.1016/j.ijbiomac.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 μM and 200 μM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 μM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 μM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.
Collapse
Affiliation(s)
- Prithvi Basak
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
2
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
3
|
Ivanenkov YA, Yu Filyaeva K, Matniyazov RT, Baymiev AK, Baymiev AK, Vladimirova AA, Yamidanov RS, Mavzyutov AR, Zileeva ZR, Zainullina LF, Vakhitova JV, Marina VI, Terentiev VA, Osterman IA, Kartsev VG, Bezrukov DS, Dontsova OA. Antibacterial activity of noscapine analogs. Bioorg Med Chem Lett 2021; 43:128055. [PMID: 33892103 DOI: 10.1016/j.bmcl.2021.128055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 01/07/2023]
Abstract
The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.
Collapse
Affiliation(s)
- Yan A Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia; The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow 127055, Russia.
| | - Kseniya Yu Filyaeva
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia; Bashkir State Medical University, Ministry of Health of Russia, Ufa 450008, Russia
| | - Rustam T Matniyazov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Andrey Kh Baymiev
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia; Bashkir State Medical University, Ministry of Health of Russia, Ufa 450008, Russia
| | - Alexey Kh Baymiev
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia; Bashkir State Medical University, Ministry of Health of Russia, Ufa 450008, Russia
| | - Anastasiya A Vladimirova
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Renat S Yamidanov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Ayrat R Mavzyutov
- Bashkir State Medical University, Ministry of Health of Russia, Ufa 450008, Russia
| | - Zulfia R Zileeva
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Liana F Zainullina
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Julia V Vakhitova
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia
| | - Valeriya I Marina
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Victor A Terentiev
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa 450054, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya A Osterman
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| | | | - Dmitry S Bezrukov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Olga A Dontsova
- Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 142290, Russia
| |
Collapse
|
4
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
5
|
Huang C, Gu Y, Chen J, Bahrani AA, Abu Jawdeh EG, Bada HS, Saatman K, Yu G, Chen L. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:1-9. [PMID: 31666792 DOI: 10.1109/jstqe.2018.2869613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Continuous and longitudinal monitoring of cerebral blood flow (CBF) in animal models provides information for studying the mechanisms and interventions of various cerebral diseases. Since anesthesia may affect brain hemodynamics, researchers have been seeking wearable devices for use in conscious animals. We present a wearable diffuse speckle contrast flowmeter (DSCF) probe for monitoring CBF variations in mice. The DSCF probe consists of a small low-power near-infrared laser diode as a point source and an ultra-small low-power CMOS camera as a 2D detector array, which can be affixed on a mouse head. The movement of red blood cells in brain cortex (i.e., CBF) produces spatial fluctuations of laser speckles, which are captured by the camera. The DSCF system was calibrated using tissue phantoms and validated in a human forearm and mouse brains for continuous monitoring of blood flow increases and decreases against the established technologies. Significant correlations were observed among these measurements (R2 ≥ 0.80, p < 10-5). This small fiberless probe has the potential to be worn by a freely moving conscious mouse. Moreover, the flexible source-detector configuration allows for varied probing depths up to ~8 mm, which is sufficient for transcranially detecting CBF in the cortices of rodents and newborn infants.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Yutong Gu
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089 USA
| | - Jing Chen
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Ahmed A Bahrani
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Elie G Abu Jawdeh
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Henrietta S Bada
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Kathryn Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Lei Chen
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
6
|
Kandel ME, Teng KW, Selvin PR, Popescu G. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy. ACS NANO 2017; 11:647-655. [PMID: 27997798 DOI: 10.1021/acsnano.6b06945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to their diameter, of only 24 nm, single microtubules are extremely challenging to image without the use of extrinsic contrast agents. As a result, fluorescence tagging is the common method to visualize their motility. However, such investigation is limited by photobleaching and phototoxicity. We experimentally demonstrate the capability of combining label-free spatial light interference microscopy (SLIM) with numerical processing for imaging single microtubules in a gliding assay. SLIM combines four different intensity images to obtain the optical path length map associated with the sample. Because of the use of broadband fields, the sensitivity to path length is better than 1 nm without (temporal) averaging and better than 0.1 nm upon averaging. Our results indicate that SLIM can image the dynamics of microtubules in a full field of view, of 200 × 200 μm2, over many hours. Modeling the microtubule transport via the diffusion-advection equation, we found that the dispersion relation yields the standard deviation of the velocity distribution, without the need for tracking individual tubes. Interestingly, during a 2 h window, the microtubules begin to decelerate, at 100 pm/s2 over a 20 min period. Thus, SLIM is likely to serve as a useful tool for understanding molecular motor activity, especially over large time scales, where fluorescence methods are of limited utility.
Collapse
Affiliation(s)
- Mikhail E Kandel
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Kai Wen Teng
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Paul R Selvin
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute of Advanced Science and Technology, ‡Center for the Physics of Living Cells, §Center for Biophysics and Quantitative Biology, ∥Department of Physics, and ⊥Department of Bioengineering, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
dos Santos RN, Morcos F, Jana B, Andricopulo AD, Onuchic JN. Dimeric interactions and complex formation using direct coevolutionary couplings. Sci Rep 2015; 5:13652. [PMID: 26338201 PMCID: PMC4559900 DOI: 10.1038/srep13652] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/13/2015] [Indexed: 11/09/2022] Open
Abstract
We develop a procedure to characterize the association of protein structures into homodimers using coevolutionary couplings extracted from Direct Coupling Analysis (DCA) in combination with Structure Based Models (SBM). Identification of dimerization contacts using DCA is more challenging than intradomain contacts since direct couplings are mixed with monomeric contacts. Therefore a systematic way to extract dimerization signals has been elusive. We provide evidence that the prediction of homodimeric complexes is possible with high accuracy for all the cases we studied which have rich sequence information. For the most accurate conformations of the structurally diverse dimeric complexes studied the mean and interfacial RMSDs are 1.95Å and 1.44Å, respectively. This methodology is also able to identify distinct dimerization conformations as for the case of the family of response regulators, which dimerize upon activation. The identification of dimeric complexes can provide interesting molecular insights in the construction of large oligomeric complexes and be useful in the study of aggregation related diseases like Alzheimer's or Parkinson's.
Collapse
Affiliation(s)
- Ricardo N. dos Santos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - Faruck Morcos
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, São Carlos, 13563-120, Brazil
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827
| |
Collapse
|
8
|
Petersen RC. Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering. INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING 2014; 3:1450003. [PMID: 25598972 PMCID: PMC4295723 DOI: 10.1142/s2047684114500031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.
Collapse
Affiliation(s)
- Richard C Petersen
- Departments of Biomedical Engineering and Biomaterial Sciences University of Alabama at Birmingham, SDB 539, 1919 7th Avenue South Birmingham, Alabama 35294, USA
| |
Collapse
|
9
|
Abstract
Far from being simple 'bags' of enzymes, bacteria are richly endowed with ultrastructures that challenge and expand standard definitions of the cytoskeleton. Here we review rods, rings, twisted pairs, tubes, sheets, spirals, moving patches, meshes and composites, and suggest defining the term 'bacterial cytoskeleton' as all cytoplasmic protein filaments and their superstructures that move or scaffold (stabilize/position/recruit) other cellular materials. The evolution of each superstructure has been driven by specific functional requirements. As a result, while homologous proteins with different functions have evolved to form surprisingly divergent superstructures, those of unrelated proteins with similar functions have converged.
Collapse
Affiliation(s)
- Martin Pilhofer
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, 1200 E California Blvd, M/C 114-96, Pasadena, CA, USA.
| | | |
Collapse
|
10
|
Abstract
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.
Collapse
|
11
|
Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ. Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 2011; 9:e1001213. [PMID: 22162949 PMCID: PMC3232192 DOI: 10.1371/journal.pbio.1001213] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/25/2011] [Indexed: 01/21/2023] Open
Abstract
Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.
Collapse
Affiliation(s)
- Martin Pilhofer
- California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Division of Biology, Pasadena, California, United States of America
- * E-mail: (GJJ); (MP)
| | - Mark S. Ladinsky
- California Institute of Technology, Pasadena, California, United States of America
| | - Alasdair W. McDowall
- California Institute of Technology, Pasadena, California, United States of America
| | - Giulio Petroni
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Grant J. Jensen
- California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, Division of Biology, Pasadena, California, United States of America
- * E-mail: (GJJ); (MP)
| |
Collapse
|
12
|
Norris V, Grondin Y. DNA movies and panspermia. Life (Basel) 2011; 1:9-18. [PMID: 25382053 PMCID: PMC4187124 DOI: 10.3390/life1010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/08/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022] Open
Abstract
There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1) the codons to exploit Life's non-equilibrium character or (2) the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.
Collapse
Affiliation(s)
- Victor Norris
- EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| | - Yohann Grondin
- Harvard School of Public Health, 665 Huntington Avenue, 02115 Boston, MA, USA.
| |
Collapse
|
13
|
Wanner G, Vogl K, Overmann J. Ultrastructural characterization of the prokaryotic symbiosis in "Chlorochromatium aggregatum". J Bacteriol 2008; 190:3721-30. [PMID: 18344357 PMCID: PMC2394997 DOI: 10.1128/jb.00027-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/07/2008] [Indexed: 11/20/2022] Open
Abstract
The phototrophic consortium "Chlorochromatium aggregatum" currently represents the most highly developed interspecific association of bacteria and consists of green sulfur bacteria, so-called epibionts, surrounding a central, motile, chemotrophic bacterium. In order to identify subcellular structures characteristic of this symbiosis, consortia were studied by a combination of high-resolution analytical scanning electron microscopy, transmission electron microscopy, and three-dimensional reconstruction and image analyses. Epibionts are interconnected and to a lesser extent are also connected with the central bacterium, by electron-dense, hair-like filaments. In addition, numerous periplasmic tubules extend from the outer membrane of the central bacterium and are in direct contact with the outer membrane of the epibionts. In each epibiont cell, the attachment site to the central bacterium is characterized by the absence of chlorosomes and an additional 17-nm-thick layer (epibiont contact layer [ECL]) attached to the inner side of the cytoplasmic membrane. The ECL is only occasionally observed in pure cultures of the epibiont, where it occurs in about 10 to 20% of the free-living cells. A striking feature of the central bacterium is the presence of one or two hexagonally packed flat crystals (central bacterium crystal [CBC]) per cell. The CBC reaches 1 microm in length, is 35 nm thick, and consists of bilayers of subunits with a spacing of 9 nm. A detailed model for consortia is presented, summarizing our conclusions regarding (i) cohesion of the cells, (ii) common periplasmic space between the central bacterium and the epibiont, (iii) ECL as a symbiosis-specific structure, and (iv) formation of the interior paracrystalline structures, central bacterium membrane layer, and CBC.
Collapse
Affiliation(s)
- Gerhard Wanner
- Department Biology I, Electron Microscopy, Ludwig-Maximilians-Universität München, Menzingerstr. 67, D-80638 München, Germany.
| | | | | |
Collapse
|
14
|
Abstract
The eukaryotic cytoskeleton appears to have evolved from ancestral precursors related to prokaryotic FtsZ and MreB. FtsZ and MreB show 40-50% sequence identity across different bacterial and archaeal species. Here I suggest that this represents the limit of divergence that is consistent with maintaining their functions for cytokinesis and cell shape. Previous analyses have noted that tubulin and actin are highly conserved across eukaryotic species, but so divergent from their prokaryotic relatives as to be hardly recognizable from sequence comparisons. One suggestion for this extreme divergence of tubulin and actin is that it occurred as they evolved very different functions from FtsZ and MreB. I will present new arguments favoring this suggestion, and speculate on pathways. Moreover, the extreme conservation of tubulin and actin across eukaryotic species is not due to an intrinsic lack of variability, but is attributed to their acquisition of elaborate mechanisms for assembly dynamics and their interactions with multiple motor and binding proteins. A new structure-based sequence alignment identifies amino acids that are conserved from FtsZ to tubulins. The highly conserved amino acids are not those forming the subunit core or protofilament interface, but those involved in binding and hydrolysis of GTP.
Collapse
Affiliation(s)
- Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710-3709, USA.
| |
Collapse
|
15
|
Abstract
Bacterial cells contain a variety of structural filamentous proteins necessary for the spatial regulation of cell shape, cell division, and chromosome segregation, analogous to the eukaryotic cytoskeletal proteins. The molecular mechanisms by which these proteins function are beginning to be revealed, and these proteins show numerous three-dimensional structural features and biochemical properties similar to those of eukaryotic actin and tubulin, revealing their evolutionary relationship. Recent technological advances have illuminated links between cell division and chromosome segregation, suggesting a higher complexity and organization of the bacterial cell than was previously thought.
Collapse
Affiliation(s)
- Katharine A Michie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
16
|
Mazouni K, Pehau-Arnaudet G, England P, Bourhy P, Saint Girons I, Picardeau M. The scc spirochetal coiled-coil protein forms helix-like filaments and binds to nucleic acids generating nucleoprotein structures. J Bacteriol 2006; 188:469-76. [PMID: 16385037 PMCID: PMC1347299 DOI: 10.1128/jb.188.2.469-476.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of the genome of Leptospira spp., a group of bacteria of the phylum of spirochetes with several unique evolutionary and morphological features, has allowed the identification of a gene encoding a coiled-coil protein, called Scc, which is completely unrelated to any other eukaryotic or prokaryotic protein. Since coiled-coil proteins are often key elements of the cytoskeleton, we analyzed the protein Scc, which is a 24-kDa protein composed of a N-terminal coiled-coil domain, a proline-rich intermediate domain, and an acidic tail. The gene scc is located in an operon which also contains the genes encoding the initiation factor IF3 and the two ribosomal proteins L20 and L35. In this study, we showed that the presence of the coiled-coil domain was responsible for the polymerization of Scc in helix-like structures, in an ATP-independent manner, in both Escherichia coli living cells and in vitro. Analysis of the Scc polymers by electron microscopy showed filaments with a width of 6 to 10 nm, similar to that of eukaryotic intermediate filaments. Scc was also found to bind both RNA and double-stranded DNA without detectable sequence specificity. By electron microscopy, we showed that Scc polymer assembly was affected by the presence of nucleic acids, giving rise to rod-shaped structures with a width ranging from 45 to 155 nm. Finally, Leptospira biflexa cells depleted in Scc form small colonies, but the morphology of their helicoidal cell body was not affected. These results provide the first insight into a unique DNA binding filament-forming coiled-coil protein that could play an important role in the subcellular architecture of the spirochetal microorganism.
Collapse
Affiliation(s)
- Khalil Mazouni
- Laboratoire des Spirochètes, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
17
|
Schlieper D, Oliva MA, Andreu JM, Löwe J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci U S A 2005; 102:9170-5. [PMID: 15967998 PMCID: PMC1166614 DOI: 10.1073/pnas.0502859102] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Indexed: 11/18/2022] Open
Abstract
alphabeta-Tubulin heterodimers, from which the microtubules of the cytoskeleton are built, have a complex chaperone-dependent folding pathway. They are thought to be unique to eukaryotes, whereas the homologue FtsZ can be found in bacteria. The exceptions are BtubA and BtubB from Prosthecobacter, which have higher sequence homology to eukaryotic tubulin than to FtsZ. Here we show that some of their properties are different from tubulin, such as weak dimerization and chaperone-independent folding. However, their structure is strikingly similar to tubulin including surface loops, and BtubA/B form tubulin-like protofilaments. Presumably, BtubA/B were transferred from a eukaryotic cell by horizontal gene transfer because their high degree of similarity to eukaryotic genes is unique within the Prosthecobacter genome.
Collapse
Affiliation(s)
- Daniel Schlieper
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
18
|
Abstract
The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.
Collapse
Affiliation(s)
- Jan Löwe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | |
Collapse
|
19
|
Abstract
Spirochetes are a medically important and ecologically significant group of motile bacteria with a distinct morphology. Outermost is a membrane sheath, and within this sheath is the protoplasmic cell cylinder and subterminally attached periplasmic flagella. Here we address specific and unique aspects of their motility and chemotaxis. For spirochetes, translational motility requires asymmetrical rotation of the two internally located flagellar bundles. Consequently, they have swimming modalities that are more complex than the well-studied paradigms. In addition, coordinated flagellar rotation likely involves an efficient and novel signaling mechanism. This signal would be transmitted over the length of the cell, which in some cases is over 100-fold greater than the cell diameter. Finally, many spirochetes, including Treponema, Borrelia, and Leptospira, are highly invasive pathogens. Motility is likely to play a major role in the disease process. This review summarizes the progress in the genetics of motility and chemotaxis of spirochetes, and points to new directions for future experimentation.
Collapse
Affiliation(s)
- Nyles W Charon
- Department of Microbiology, Immunology, and Cell Biology, Health Sciences Center, West Virginia University, Box 9177, Morgantown, West Virginia 26506-9177, USA.
| | | |
Collapse
|
20
|
Jenkins C, Samudrala R, Anderson I, Hedlund BP, Petroni G, Michailova N, Pinel N, Overbeek R, Rosati G, Staley JT. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci U S A 2002; 99:17049-54. [PMID: 12486237 PMCID: PMC139267 DOI: 10.1073/pnas.012516899] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tubulins, the protein constituents of the microtubule cytoskeleton, are present in all known eukaryotes but have never been found in the Bacteria or Archaea. Here we report the presence of two tubulin-like genes [bacterial tubulin a (btuba) and bacterial tubulin b (btubb)] in bacteria of the genus Prosthecobacter (Division Verrucomicrobia). In this study, we investigated the organization and expression of these genes and conducted a comparative analysis of the bacterial and eukaryotic protein sequences, focusing on their phylogeny and 3D structures. The btuba and btubb genes are arranged as adjacent loci within the genome along with a kinesin light chain gene homolog. RT-PCR experiments indicate that these three genes are cotranscribed, and a probable promoter was identified upstream of btuba. On the basis of comparative modeling data, we predict that the Prosthecobacter tubulins are monomeric, unlike eukaryotic alpha and beta tubulins, which form dimers and are therefore unlikely to form microtubule-like structures. Phylogenetic analyses indicate that the Prosthecobacter tubulins are quite divergent and do not support recent horizontal transfer of the genes from a eukaryote. The discovery of genes for tubulin in a bacterial genus may offer new insights into the evolution of the cytoskeleton.
Collapse
Affiliation(s)
- Cheryl Jenkins
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Izard J, Samsonoff WA, Limberger RJ. Cytoplasmic filament-deficient mutant of Treponema denticola has pleiotropic defects. J Bacteriol 2001; 183:1078-84. [PMID: 11208807 PMCID: PMC94976 DOI: 10.1128/jb.183.3.1078-1084.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Treponema denticola, a ribbon-like structure of cytoplasmic filaments spans the cytoplasm at all stages of the cell division process. Insertional inactivation was used as a first step to determine the function of the cytoplasmic filaments. A suicide plasmid was constructed that contained part of cfpA and a nonpolar erythromycin resistance cassette (ermF and ermAM) inserted near the beginning of the gene. The plasmid was electroporated into T. denticola, and double-crossover recombinants which had the chromosomal copy of cfpA insertionally inactivated were selected. Immunoblotting and electron microscopy confirmed the lack of cytoplasmic filaments. The mutant was further analyzed by dark-field microscopy to determine cell morphology and by the binding of two fluorescent dyes to DNA to assess the distribution of cellular nucleic acids. The cytoplasmic filament protein-deficient mutant exhibited pleiotropic defects, including highly condensed chromosomal DNA, compared to the homogeneous distribution of the DNA throughout the cytoplasm in a wild-type cell. Moreover, chains of cells are formed by the cytoplasmic filament-deficient mutant, and those cells show reduced spreading in agarose, which may be due to the abnormal cell length. The chains of cells and the highly condensed chromosomal DNA suggest that the cytoplasmic filaments may be involved in chromosome structure, segregation, or the cell division process in Treponema.
Collapse
Affiliation(s)
- J Izard
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | |
Collapse
|
22
|
Affiliation(s)
- G I McFadden
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
23
|
Petroni G, Spring S, Schleifer KH, Verni F, Rosati G. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci U S A 2000; 97:1813-7. [PMID: 10660683 PMCID: PMC26518 DOI: 10.1073/pnas.030438197] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1999] [Indexed: 11/18/2022] Open
Abstract
Epixenosomes, ectosymbionts on hypotrich ciliates (genus Euplotidium) defend their host against the ciliate predator Litonotus lamella. Although here only Euplotidium itoi and Euplotidium arenarium from tide pools along a rocky shore near Leghorn (Ligurian sea) were studied in detail, these epibionts are certainly present on specimens of E. itoi and on other Euplotidium species in similar north coastal habitats. The complex life history of epixenosomes has two main stages. In stage I, cells with typical prokaryotic structure divide by binary fission. Stage II cells show complex organization with different cytoplasmic compartments where an extrusive apparatus within a proteinaceous matrix, although not membrane-bounded, differs from the remaining cytoplasm. The ejection process is involved in defense; extrusive apparatus is surrounded by a basket consisting of bundles of tubules. These tubules, 22 +/- 3 nm in diameter, delimited by a wall made up of globular structures, are sensitive to inhibitor of tubulin polymerization (nocodazole/4 degrees C temperature) and react positively with different antitubulin antibodies, two of which are monoclonal. The prokaryotic vs. eukaryotic nature of epixenosomes was resolved by comparative sequence analysis of amplified small subunit rRNA genes and in situ hybridization with fluorescently labeled rRNA-targeted polynucleotide probes. These unique ectosymbionts are phylogenetically related to Verrucomicrobia. Epixenosomes represent marine symbionts in this recently discovered division of the Bacteria.
Collapse
Affiliation(s)
- G Petroni
- Department of Etology, University of Pisa, via A. Volta 6, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
24
|
Abstract
Intracellular parasites and endosymbionts are present in almost all forms of life, including bacteria. Some eukaryotic organelles are believed to be derived from ancestral endosymbionts. Parasites and symbionts show several adaptations to intracellular life. A comparative analysis of their biology suggests some general considerations involved in adapting to intracellular life and reveals a number of independently achieved strategies for the exploitation of an intracellular habitat. Symbioses mainly based on a form of syntrophy may have led to the establishment of unique physiological systems. Generally, a symbiont can be considered to be an attenuated pathogen. The combination of morphological studies, molecular phylogenetic analyses, and palaeobiological data has led to considerable improvement in the understanding of intracellular life evolution. Comparing host and symbiont phylogenies could lead to an explanation of the evolutionary history of symbiosis. These studies also provide strong evidences for the endosymbiogenesis of the eukaryotic cell. Indeed, an eubacterial origin for mitochondria and plastids is well accepted and is suggested for other organelles. The expansion of intracellular living associations is presented, with a particular emphasis on peculiar aspects and/or recent data, providing a global evaluation.
Collapse
Affiliation(s)
- D Corsaro
- Laboratoire de Microbiologie-Virologie, Centre Hospitalier Universitaire de Nancy, France
| | | | | | | |
Collapse
|
25
|
Yaoi T, Kagawa HK, Trent JD. Chaperonin filaments: their formation and an evaluation of methods for studying them. Arch Biochem Biophys 1998; 356:55-62. [PMID: 9681991 DOI: 10.1006/abbi.1998.0758] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chaperonins are multisubunit protein complexes that can be isolated from cells as high-molecular-weight structures that appear as double rings in the electron microscope. We recently discovered that chaperonin double rings isolated from the hyperthermophilic archaeon Sulfolobus shibatae, when incubated at physiological temperatures in the presence of ATP and Mg2+, stacked into filaments; we hypothesized that these filaments are related to filaments seen inside S. shibatae cells and that chaperonins exist as filaments in vivo (J. D. Trent et al., 1997, Proc. Natl. Acad. Sci. USA 94, 5383-5388). This paper elucidates the conditions under which we have observed S. shibatae chaperonins to form filaments and evaluates native polyacrylamide gel electrophoresis (PAGE), TEM, spectrophotometry, and centrifugation as methods for studying these filaments. We observed that in the presence of Mg2+ combined with ATP, ADP, ATPgammaS, or GTP, native PAGE indicated that chaperonin subunits assembled into double rings and that the conformation of these double rings was effected by nucleotide binding, but we saw no indication of chaperonin filament formation. Under these same conditions, however, TEM, spectroscopy, and centrifugation methods indicated that chaperonin subunits and double rings had assembled into filaments. We determined that this discrepancy in the representation of the chaperonin structure was due to the native PAGE method itself. When we exposed chaperonin filaments to the electrophoretic field used in native PAGE, the filaments dissociated into double rings. This suggests that TEM, spectrophotometry, and centrifugation are the preferred methods for studying the higher-order structures of chaperonins, which are likely to be of biological significance.
Collapse
Affiliation(s)
- T Yaoi
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA
| | | | | |
Collapse
|
26
|
Abstract
Improved fluorescence techniques for visualizing proteins in whole bacterial cells have resulted in recent breakthroughs in our understanding of chromosome segregation and cytokinesis in prokaryotes. The dynamics and localization of some of these proteins reveal surprisingly cytoskeletal-like behavior.
Collapse
Affiliation(s)
- W Margolin
- Dept of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA.
| |
Collapse
|
27
|
Abstract
The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.
Collapse
Affiliation(s)
- A Desai
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
28
|
Buchwalow IB, Emoto M, Brich M, Kaufmann SH. Involvement of tubulin and inhibitory G proteins in the interaction of Listeria monocytogenes with mouse hepatocytes. Infect Immun 1997; 65:1095-7. [PMID: 9038321 PMCID: PMC175093 DOI: 10.1128/iai.65.3.1095-1097.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular and cell-to-cell spread of Listeria monocytogenes has been considered exclusively actin dependent. By immunocytochemical techniques, we provide evidence for an involvement of inhibitory G proteins and tubulin in "comet tail" formation in L. monocytogenes-infected mouse hepatocytes.
Collapse
Affiliation(s)
- I B Buchwalow
- Department of Immunology, University of Ulm, Germany
| | | | | | | |
Collapse
|
29
|
Helms MK, Marriott G, Sawyer WH, Jameson DM. Dynamics and morphology of the in vitro polymeric form of elongation factor Tu from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1291:122-30. [PMID: 8898872 DOI: 10.1016/0304-4165(96)00054-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elongation factor Tu from Escherichia coli is known to polymerize at slightly acidic pH and low ionic strength. The structure and dynamics of these aggregates have been examined using imaging and spectroscopic methodologies. Electron microscopy provides evidence for two-dimensional sheets and bundled filaments of EF-Tu, whereas fluorescence microscopy of EF-Tu covalently labeled with tetramethylrhodamine isothiocyanate showed highly branched polymers of EF-Tu several microns in diameter. These polymers were studied using quasi-elastic light scattering to determine the evolution of the translational diffusion coefficient during the polymerization process. The rotational dynamics of the aggregate were investigated using phosphorescence anisotropy of EF-Tu covalently labeled with erythrosin isothiocyanate. A high infinite-time anisotropy was observed, suggesting a lack of motion or entanglement of EF-Tu polymers. A sub-microsecond motion which was slowed in the presence of glycerol may be due to local flexibility of the polymers. The possible relevance of polymeric EF-Tu to its function in vivo is discussed.
Collapse
Affiliation(s)
- M K Helms
- Department of Biochemistry and Biophysics, University of Hawaii, Honolulu 96822, USA
| | | | | | | |
Collapse
|
30
|
You Y, Elmore S, Colton LL, Mackenzie C, Stoops JK, Weinstock GM, Norris SJ. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J Bacteriol 1996; 178:3177-87. [PMID: 8655496 PMCID: PMC178068 DOI: 10.1128/jb.178.11.3177-3187.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treponema pallidum and other members of the genera Treponema, Spirochaeta, and Leptonema contain multiple cytoplasmic filaments that run the length of the organism just underneath the cytoplasmic membrane. These cytoplasmic filaments have a ribbon-like profile and consist of a major cytoplasmic filament protein subunit (CfpA, formerly called TpN83) with a relative molecular weight of approximately 80,000. Degenerate DNA primers based on N-terminal and CNBr cleavage fragment amino acid sequences of T. pallidum subsp. pallidum (Nichols) CfpA were utilized to amplify a fragment of the encoding gene (cfpA). A 6.8-kb EcoRI fragment containing all but the 5' end of cfpA was identified by hybridization with the resulting PCR product and cloned into Lambda ZAP II. The 5' region was obtained by inverse PCR, and the complete gene sequence was determined. The cfpA sequence contained a 2,034-nucleotide coding region, a putative promoter with consensus sequences (5'-TTTACA-3' for -35 and 5'-TACAAT-3' for -10) similar to the sigma70 recognition sequence of Escherichia coli and other organisms, and a putative ribosome-binding site (5'-AGGAG-3'). The deduced amino acid sequence of CfpA indicated a protein of 678 residues with a calculated molecular mass of 78.5 kDa and an estimated pI of 6.15. No significant homology to known proteins or structural motifs was found among known prokaryotic or eukaryotic sequences. Expression of a LacZ-CfpA fusion protein in E. coli was detrimental to survival and growth of the host strain and resulted in the formation of short, irregular filaments suggestive of partial self-assembly of CfpA. The cytoplasmic filaments of T. pallidum and other spirochetes appear to represent a unique form of prokaryotic intracytoplasmic inclusions.
Collapse
Affiliation(s)
- Y You
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77225, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Actin filaments and microtubules form the cytoskeleton of all eukaryotic cells, and they are responsible for organizing the cytoplasm and supporting motile processes. Both polymers are highly dynamic, and their polymerization dynamics are central to their organization. Though their evolutionary origins appear to be distinct, actin and tubulin have a similar mechanism for promoting polymerization dynamics in which the energy of nucleotide triphosphate hydrolysis during polymerization is used to weaken the bonds between subunits, thus promoting subsequent depolymerization. The evolutionary origins of actin and tubulin are unclear. It is likely that motile mechanisms driven by reversible polymerization, termed thermal ratchets, are older than those based on ATPase motor proteins. Such mechanisms are still important in modern eukaryotes, and may have powered early versions of the critical motile processes of phagocytosis and chromosome segregation in primitive cells. Thus evolution of dynamic cytoskeletal polymers may have been one of the earliest and most important steps leading to the evolution of eukaryotes. Plausible evolutionary pathways can be constructed leading from simple enzymes to dynamic cytoskeletal polymers.
Collapse
Affiliation(s)
- T J Mitchison
- Department of Pharmacology, U.C.S.F. 94143-0450, USA
| |
Collapse
|
32
|
Affiliation(s)
- H P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|