1
|
Duan YL, Li ZH, Bellis GA, Li L, Liu BG, Wang JP, Liu JM, Liao DF, Zhu JB. Culicoides and midge-associated arboviruses on cattle farms in Yunnan Province, China. Parasite 2024; 31:72. [PMID: 39565151 DOI: 10.1051/parasite/2024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
Culicoides spp. (Diptera: Ceratopogonidae) are small biting midges, some of which are the vectors of arboviruses affecting livestock, i.e., African horse sickness virus (AHSV), bluetongue virus (BTV), and epizootic hemorrhagic disease virus (EHDV). Yunnan Province, located in southwestern China, has a history of high prevalence of arboviruses. The diversity and abundance of Culicoides was observed between March 2022 and March 2023 on two cattle farms in Lufeng County of Yunnan Province, China and virus isolation and PCR detection were attempted from cattle blood and Culicoides spp. collected from the farms. Light trap collections contained 19 species of Culicoides belonging to 8 subgenera and one unplaced species group and were dominated by C. oxystoma (63.4%), C. imicola (16.2%), C. arakawae (13.4%), C. sp. near newsteadi (2.3%), and C. orientalis (1.7%). A total of 8,343 Culicoides were used for statistical analysis; from these collections 997 Culicoides specimens belonging to 10 species were screened for the presence of BTV, EHDV, Yunnan Orbivirus (YUOV), and Yongshan totivirus (YSToV) using reverse transcription quantitative PCR (RT-qPCR). One strain of YUOV was isolated from cattle blood and 7 isolates of YSToV were isolated from 5 different species of Culicoides. BTV and YSToV were detected from 2 and 3 pools of parous C. imicola specimens by RT-qPCR, respectively, which is the first report of a totivirus to be associated with Culicoides. Culicoides imicola is likely to be the major vector of Culicoides-borne arboviruses in Lufeng County, which is a relatively dry locality, and adult C. imicola may play a role of BTV overwintering.
Collapse
Affiliation(s)
- Ying-Liang Duan
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China - Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China - Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China
| | - Glenn A Bellis
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan drive, Casuarina, NT 0810, Australia
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China - Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China
| | - Bing-Gang Liu
- Center for Animal Disease Control and Prevention, Xinxi Street, Lufeng 651200, Yunnan, China
| | - Jian-Ping Wang
- Center for Animal Disease Control and Prevention, Xinxi Street, Lufeng 651200, Yunnan, China
| | - Jian-Mei Liu
- Center for Animal Disease Control and Prevention, Xinxi Street, Lufeng 651200, Yunnan, China
| | - De-Fang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China - Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China
| | - Jian-Bo Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China - Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fengyu Road, Panlong District, Kunming 650224, Yunnan, China
| |
Collapse
|
2
|
Characterization of a Novel Orbivirus from Cattle Reveals Active Circulation of a Previously Unknown and Pathogenic Orbivirus in Ruminants in Kenya. mSphere 2023; 8:e0048822. [PMID: 36794933 PMCID: PMC10117150 DOI: 10.1128/msphere.00488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.
Collapse
|
3
|
Tian F, He J, Shang S, Chen Z, Tang Y, Lu M, Huang C, Guo X, Tong Y. Survey of mosquito species and mosquito-borne viruses in residential areas along the Sino-Vietnam border in Yunnan Province in China. Front Microbiol 2023; 14:1105786. [PMID: 36910188 PMCID: PMC9996012 DOI: 10.3389/fmicb.2023.1105786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Mosquitoes are capable of carrying complex pathogens, and their feeding habits on the mammalian blood can easily mediate the spread of viruses. Surveillance of mosquito-based arbovirus enables the early prevention and control of mosquito-borne arboviral diseases. The climate and geography of Yunnan Province in China are ideal for mosquitoes. Yunnan shares borders with several other countries; therefore, there exists a high risk of international transmission of mosquito-mediated infectious diseases. Previous studies have focused more on the Sino-Laos and Sino-Myanmar borders. Therefore, we focused on the neighborhoods of Malipo and Funing counties in Wenshan Prefecture, Yunnan Province, China, which are located along the Sino-Vietnam border, to investigate the species of mosquitoes and mosquito-borne viruses in the residential areas of this region. This study collected 10,800 mosquitoes from 29 species of 8 genera and grouped to isolate mosquito-borne viruses. In total, 62 isolates were isolated and classified into 11 viral categories. We demonstrated a new distribution of mosquito-borne viruses among mosquitoes in border areas, including Tembusu and Getah viruses, which can cause animal outbreaks. In addition, Dak Nong and Sarawak viruses originating from Vietnam and Malaysia, respectively, were identified for the first time in China, highlighting the complexity of mosquito-borne viruses in the Sino-Vietnam border region. The awareness of the importance of viral surveillance and prevention measures in border areas should be further encouraged to prevent future outbreaks of potentially infectious diseases.
Collapse
Affiliation(s)
- Fengjuan Tian
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jimin He
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shanlin Shang
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Zhongyan Chen
- Malipo County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Yumei Tang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Man Lu
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Changzhi Huang
- Funing County Center for Disease Control and Prevention, Wenshanzhou, Yunnan, China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases Control, Puer, Yunnan, China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Rodrigues TCS, Viadanna PHO, Subramaniam K, Hawkins IK, Jeon AB, Loeb JC, Krauer JMC, Lednicky JA, Wisely SM, Waltzek TB. Characterization of a Novel Reassortant Epizootic Hemorrhagic Disease Virus Serotype 6 Strain Isolated from Diseased White-Tailed Deer ( Odocoileus virginianus) on a Florida Farm. Viruses 2022; 14:1012. [PMID: 35632753 PMCID: PMC9146129 DOI: 10.3390/v14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We report an outbreak of a novel reassortant epizootic hemorrhagic disease virus serotype 6 (EHDV-6) in white-tailed deer (WTD) on a Florida farm in 2019. At necropsy, most animals exhibited hemorrhagic lesions in the lung and heart, and congestion in the lung, liver, and spleen. Histopathology revealed multi-organ hemorrhage and congestion, and renal tubular necrosis. Tissues were screened by RT-qPCR and all animals tested positive for EHDV. Tissues were processed for virus isolation and next-generation sequencing was performed on cDNA libraries generated from the RNA extracts of cultures displaying cytopathic effects. Six isolates yielded nearly identical complete genome sequences of a novel U.S. EHDV-6 strain. Genetic and phylogenetic analyses revealed the novel strain to be most closely related to a reassortant EHDV-6 strain isolated from cattle in Trinidad and both strains received segment 4 from an Australian EHDV-2 strain. The novel U.S. EHDV-6 strain is unique in that it acquired segment 8 from an Australian EHDV-8 strain. An RNAscope® in situ hybridization assay was developed against the novel U.S. EHDV-6 strain and labeling was detected within lesions of the heart, kidney, liver, and lung. These data support the novel U.S. reassortant EHDV-6 strain as the cause of disease in the farmed WTD.
Collapse
Affiliation(s)
- Thaís C. S. Rodrigues
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Pedro H. O. Viadanna
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| | - Ian K. Hawkins
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Albert B. Jeon
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (I.K.H.); (A.B.J.)
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Juan M. C. Krauer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; (T.C.S.R.); (P.H.O.V.); (K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; (J.C.L.); (J.A.L.); (S.M.W.)
| |
Collapse
|