1
|
Webster G, Cragg BA, Rinna J, Watkins AJ, Sass H, Weightman AJ, Parkes RJ. Methanogen activity and microbial diversity in Gulf of Cádiz mud volcano sediments. Front Microbiol 2023; 14:1157337. [PMID: 37293223 PMCID: PMC10244519 DOI: 10.3389/fmicb.2023.1157337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
The Gulf of Cádiz is a tectonically active continental margin with over sixty mud volcanoes (MV) documented, some associated with active methane (CH4) seepage. However, the role of prokaryotes in influencing this CH4 release is largely unknown. In two expeditions (MSM1-3 and JC10) seven Gulf of Cádiz MVs (Porto, Bonjardim, Carlos Ribeiro, Captain Arutyunov, Darwin, Meknes, and Mercator) were analyzed for microbial diversity, geochemistry, and methanogenic activity, plus substrate amended slurries also measured potential methanogenesis and anaerobic oxidation of methane (AOM). Prokaryotic populations and activities were variable in these MV sediments reflecting the geochemical heterogeneity within and between them. There were also marked differences between many MV and their reference sites. Overall direct cell numbers below the SMTZ (0.2-0.5 mbsf) were much lower than the general global depth distribution and equivalent to cell numbers from below 100 mbsf. Methanogenesis from methyl compounds, especially methylamine, were much higher than the usually dominant substrates H2/CO2 or acetate. Also, CH4 production occurred in 50% of methylated substrate slurries and only methylotrophic CH4 production occurred at all seven MV sites. These slurries were dominated by Methanococcoides methanogens (resulting in pure cultures), and prokaryotes found in other MV sediments. AOM occurred in some slurries, particularly, those from Captain Arutyunov, Mercator and Carlos Ribeiro MVs. Archaeal diversity at MV sites showed the presence of both methanogens and ANME (Methanosarcinales, Methanococcoides, and ANME-1) related sequences, and bacterial diversity was higher than archaeal diversity, dominated by members of the Atribacterota, Chloroflexota, Pseudomonadota, Planctomycetota, Bacillota, and Ca. "Aminicenantes." Further work is essential to determine the full contribution of Gulf of Cádiz mud volcanoes to the global methane and carbon cycles.
Collapse
Affiliation(s)
- Gordon Webster
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Barry A. Cragg
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Joachim Rinna
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
- Aker BP ASA, Lysaker, Norway
| | - Andrew J. Watkins
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
- The Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, Wales, United Kingdom
| | - Henrik Sass
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrew J. Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - R. John Parkes
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
2
|
Liang L, Sun Y, Dong Y, Ahmad T, Chen Y, Wang J, Wang F. Methanococcoides orientis sp. nov., a methylotrophic methanogen isolated from sediment of the East China Sea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A novel methylotrophic methanogen Methanococcoides orientis sp. nov. was isolated from East China Sea sediment. Type strain LMO-1T of Methanococcoides orientis sp. nov. was irregular 1–2 µm cocci without flagella. Strain LMO-1T could utilize a variety of methylated compounds including methanol, methylamine, dimethylamine and trimethylamine for growth and methanogenesis, while H2/CO2 or acetate could not be used for growth or methanogenesis. Optimum growth temperature was 30–35 °C, optimum pH range for growth was 7.0–7.5, while the optimum salinity spectrum for growth was 1.0%–5.0% NaCl. Based on 16S rRNA gene similarity, strain LMO-1T belongs to
Methanococcoides
, with the highest sequence similarity to
Methanococcoides methylutens
DSM 2657T (99.8 %),
Methanococcoides vulcani
SLH33T(99.4 %), followed by
Methanococcoides alaskense
AK-5T(98.1 %),
Methanococcoides burtonii
DSM 6242T (98.0 %). Digital DNA–DNA hybridization also showed highest similarity with
Methanococcoides methylutens
DSM 2657T, with the value of 58.4 %. The average nucleotide identity between strain LMO-1T and
Methanococcoides methylutens
DSM 2657T was 94.06 %. In summary, LMO-1T represents a novel species of the genus Methaococcoides, for which the name Methanococcoides orientis sp. nov. is proposed. The type strain is LMO-1T (=MCCC 4K00106T=JCM 39195T).
Collapse
Affiliation(s)
- Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Sun
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yijing Dong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Tariq Ahmad
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yifan Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Fengping Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
3
|
Schorn S, Ahmerkamp S, Bullock E, Weber M, Lott C, Liebeke M, Lavik G, Kuypers MMM, Graf JS, Milucka J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc Natl Acad Sci U S A 2022; 119:e2106628119. [PMID: 35165204 PMCID: PMC8892325 DOI: 10.1073/pnas.2106628119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
Collapse
Affiliation(s)
- Sina Schorn
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Emma Bullock
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | | | | | - Manuel Liebeke
- Symbiosis Department, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Gaute Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jon S Graf
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
4
|
Creighbaum AJ, Ticak T, Shinde S, Wang X, Ferguson DJ. Examination of the Glycine Betaine-Dependent Methylotrophic Methanogenesis Pathway: Insights Into Anaerobic Quaternary Amine Methylotrophy. Front Microbiol 2019; 10:2572. [PMID: 31787957 PMCID: PMC6855144 DOI: 10.3389/fmicb.2019.02572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/23/2019] [Indexed: 01/23/2023] Open
Abstract
Recent studies indicate that environmentally abundant quaternary amines (QAs) are a primary source for methanogenesis, yet the catabolic enzymes are unknown. We hypothesized that the methanogenic archaeon Methanolobus vulcani B1d metabolizes glycine betaine (GB) through a corrinoid-dependent GB:coenzyme M (CoM) methyl transfer pathway. The draft genome sequence of M. vulcani B1d revealed a gene encoding a predicted non-pyrrolysine MttB homolog (MV8460) with high sequence similarity to the GB methyltransferase encoded by Desulfitobacterium hafniense Y51. MV8460 catalyzes GB-dependent methylation of free cob(I)alamin indicating it is an authentic MtgB enzyme. Proteomic analysis revealed that MV8460 and a corrinoid binding protein (MV8465) were highly abundant when M. vulcani B1d was grown on GB relative to growth on trimethylamine. The abundance of a corrinoid reductive activation enzyme (MV10335) and a methylcorrinoid:CoM methyltransferase (MV10360) were significantly higher in GB-grown B1d lysates compared to other homologs. The GB:CoM pathway was fully reconstituted in vitro using recombinant MV8460, MV8465, MV10335, and MV10360. Demonstration of the complete GB:CoM pathway expands the knowledge of direct QA-dependent methylotrophy and establishes a model to identify additional ecologically relevant anaerobic quaternary amine pathways.
Collapse
Affiliation(s)
- Adam J Creighbaum
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Tomislav Ticak
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Shrameeta Shinde
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Donald J Ferguson
- Department of Microbiology, Miami University, Oxford, OH, United States.,Department of Biological Sciences, Miami University Regionals, Hamilton, OH, United States
| |
Collapse
|