1
|
Sugimoto S, Kawase M, Suwa R, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Hanaki KI, Hosoya M, Hashimoto K, Shirato K. Comparison of mutations in human parainfluenza viruses during passage in primary human bronchial/tracheal epithelial air-liquid interface cultures and cell lines. Microbiol Spectr 2024; 12:e0116424. [PMID: 39078148 PMCID: PMC11370246 DOI: 10.1128/spectrum.01164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Human parainfluenza virus (HPIV) causes respiratory infections, which are exacerbated in children and older people. Correct evaluation of viral characteristics is essential for the study of countermeasures. However, adaptation of viruses to cultured cells during isolation or propagation might select laboratory passage-associated mutations that modify the characteristics of the virus. It was previously reported that adaptation of HPIV3, but not other HPIVs, was avoided in human airway epithelia. To examine the influence of laboratory passage on the genomes of HPIV1-HPIV4, we evaluated the occurrence of mutations after passage in primary human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) culture and conventional cultured cells (Vero cells expressing the transmembrane protease, serine 2, and normal Vero cells). The occurrence of mutations was significantly lower in HBTEC-ALI than in conventional culture. In HBTEC-ALI culture, most of the mutations were silent or remained at low variant frequency, resulting in less impact on the viral consensus sequence. In contrast, passage in conventional culture induced or selected genetic mutations at high frequency with passage-associated unique substitutions. High mutagenesis of hemagglutinin-neuraminidase was commonly observed in all four HPIVs, and mutations even occurred in a single passage. In addition, in HPIV1 and HPIV2, mutations in the large protein were more frequent. These results indicate that passage in HBTEC-ALI culture is more suitable than conventional culture for maintaining the original characteristics of clinical isolates in all four HPIVs, which can help with the understanding of viral pathogenesis. IMPORTANCE Adaptation of viruses to cultured cells can increase the risk of misinterpretation in virological characterization of clinical isolates. In human parainfluenza virus (HPIV) 3, it has been reported that the human airway epithelial and lung organoid models are preferable for the study of viral characteristics of clinical strains without mutations. Therefore, we analyzed clinical isolates of all four HPIVs for the occurrence of mutations after five laboratory passages in human bronchial/tracheal epithelial cell air-liquid interface (HBTEC-ALI) or conventional culture. We found a high risk of hemagglutinin-neuraminidase mutagenesis in all four HPIVs in conventional cultured cells. In addition, in HPIV1 and HPIV2, mutations of the large protein were also more frequent in conventional cultured cells than in HBTEC-ALI culture. HBTEC-ALI culture was useful for maintaining the original sequence and characteristics of clinical isolates in all four HPIVs. The present study contributes to the understanding of HPIV pathogenesis and antiviral strategies.
Collapse
Affiliation(s)
- Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ken-Ichi Hanaki
- Research Center for Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Shirato K, Suwa R, Nao N, Kawase M, Sugimoto S, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Sato M, Sakuma H, Suzuki S, Hosoya M, Takeda M, Hashimoto K. Molecular Epidemiology of Human Metapneumovirus in East Japan before and after COVID-19, 2017-2022. Jpn J Infect Dis 2024; 77:137-143. [PMID: 38171847 DOI: 10.7883/yoken.jjid.2023.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human metapneumovirus (hMPV) is genetically classified into two major subgroups, A and B, based on attachment glycoprotein (G protein) gene sequences. The A2 subgroup is further separated into three subdivisions, A2a, A2b (A2b1), and A2c (A2b2). Subgroup A2c viruses carrying 180- or 111-nucleotide duplications in the G gene (A2c 180nt-dup or A2c 111nt-dup ) have been reported in Japan and Spain. The coronavirus disease 2019 (COVID-19) pandemic disrupted the epidemiological kinetics of other respiratory viruses, including hMPV. In this study, we analyzed the sequences of hMPV isolates in Tokyo and Fukushima obtained from 2017 to 2022, i.e., before and after the COVID-19 pandemic. Subgroup A hMPV strains were detected from 2017 to 2019, and most cases were A2c 111nt-dup, suggesting ongoing transmission of this clade, consistent with global transmission dynamics. Subgroup B viruses, but not subgroup A viruses, were detected in 2022 after the COVID-19 peak. Phylogenetic analysis showed that the subgroup B viruses were closely related to strains detected in Yokohama from 2013 to 2016, and strains detected in Fukushima in 2019, suggesting the reappearance of local endemic viruses in East Japan.
Collapse
Affiliation(s)
- Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Naganori Nao
- Department of Virology III, National Institute of Infectious Diseases, Japan
- One Health Research Center, International Institute for Zoonosis Control, Hokkaido University, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Management Department of Biosafety, Laboratory Animals, and Pathogen Bank, National Institute of Infectious Diseases, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Masatoki Sato
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | | | | | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| |
Collapse
|
3
|
Nearly Complete Genome Sequences of 12 Types of Human Rhinoviruses Isolated from Pediatric Inpatients in Fukushima, Japan. Microbiol Resour Announc 2022; 11:e0052922. [PMID: 35862917 PMCID: PMC9387279 DOI: 10.1128/mra.00529-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We reported nearly complete genomic sequences of 12 serotypes of human rhinoviruses (HRVs) isolated from pediatric inpatients in Fukushima, Japan using an air-liquid interface culture of human bronchial tracheal epithelial cells. We found that various serotypes of HRV circulated locally and simultaneously from 2018 to 2021.
Collapse
|