2
|
Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: Molecular interactions with their hosts. J Basic Microbiol 2021; 61:475-505. [PMID: 33834549 DOI: 10.1002/jobm.202000657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023]
Abstract
Plant growth promotion has been found associated with plants on the surface (epiphytic), inside (endophytic), or close to the plant roots (rhizospheric). Endophytic bacteria mainly have been researched for their beneficial activities in terms of nutrient availability, plant growth hormones, and control of soil-borne and systemic pathogens. Molecular communications leading to these interactions between plants and endophytic bacteria are now being unrevealed using multidisciplinary approaches with advanced techniques such as metagenomics, metaproteomics, metatranscriptomics, metaproteogenomic, microRNAs, microarray, chips as well as the comparison of complete genome sequences. More than 400 genes in both the genomes of host plant and bacterial endophyte are up- or downregulated for the establishment of endophytism and plant growth-promoting activity. The involvement of more than 20 genes for endophytism, about 50 genes for direct plant growth promotion, about 25 genes for biocontrol activity, and about 10 genes for mitigation of different stresses has been identified in various bacterial endophytes. This review summarizes the progress that has been made in recent years by these modern techniques and approaches.
Collapse
Affiliation(s)
- Surjit S Dudeja
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Pooja Suneja-Madan
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Minakshi Paul
- Department of Bio & Nanotechnology, Guru Jambeshwar University of Science & Technology, Hisar, India
| | - Rajat Maheswari
- Department of Microbiology, Maharishi Dayanand University, Rohtak, India
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Faculty for Biosciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
3
|
Ngalimat MS, Yahaya RSR, Baharudin MMAA, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A Review on the Biotechnological Applications of the Operational Group Bacillus amyloliquefaciens. Microorganisms 2021; 9:microorganisms9030614. [PMID: 33802666 PMCID: PMC8002464 DOI: 10.3390/microorganisms9030614] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
Collapse
Affiliation(s)
- Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Mohamad Malik Al-adil Baharudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
| | - Syafiqah Mohd. Yaminudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.Y.); (M.K.)
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.S.N.); (R.S.R.Y.); (M.M.A.-a.B.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698298
| |
Collapse
|
4
|
Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol 2020; 40:1210-1231. [PMID: 32862700 DOI: 10.1080/07388551.2020.1808584] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endophytic microbes are present in nearly all of the plant species known to date but how they enter and flourish inside a host plant and display multiple benefits like plant growth promotion (PGP), biodegradation, and stress alleviation are still unexplored. Until now, the majority of the research has been conducted assuming that the host-endophyte interaction is analogous to the PGP microbes, although, studies related to the mechanisms of their infection, colonization as well as conferring important traits to the plants are limited. It would be fascinating to explore the role of these endophytic microbes in host gene expression, metabolism, and the modulation of phenotypic traits, under abiotic and biotic stress conditions. In this review, we critically focused on the following areas: (i) endophytic lifestyle and the mechanism of their entry into plant tissues, (ii) how endophytes modulate the immune system of plants and affect the genotypic and phenotypic expression of host plants under abiotic and biotic stress condition, and (iii) the role of omics and other integrated genomic approaches in unraveling complex host-endophyte signaling crosstalk. Furthermore, we discussed their role in phytoremediation of heavy metal stress and whole genomic analysis based on an understanding of different metabolic pathways these endophytes utilize to combat stress.
Collapse
Affiliation(s)
- Anamika Dubey
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Ashwani Kumar
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Selvadurai Dayanandan
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India.,Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Mohammad Latif Khan
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| |
Collapse
|
5
|
Complete Genome Sequence of Bacillus velezensis Strain DKU_NT_04, Isolated from a Traditional Korean Food Made from Soybeans (Cheonggukjang). Microbiol Resour Announc 2020; 9:9/24/e00477-20. [PMID: 32527778 PMCID: PMC7291103 DOI: 10.1128/mra.00477-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the present work, we report the complete genome sequence of Bacillus velezensis DKU_NT_04, isolated from cheonggukjang, which is a traditional Korean fermented soybean paste. The final genome assembly consists of a 4.328-Mbp chromosome with 4,134 coding sequences and a G+C content of 45.21%.
Collapse
|