1
|
Fulton JC, Yu PL, Smith KE, Huguet-Tapia JC, Hudson O, Meeks A, Quesada T, McKeever K, Brawner JT. Comparative Genomics of Fusarium circinatum Isolates Used to Screen Southern Pines for Pitch Canker Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:477-487. [PMID: 35266808 DOI: 10.1094/mpmi-10-21-0247-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pitch canker, caused by the fungal pathogen Fusarium circinatum, is a global disease affecting many Pinus spp. Often fatal, this disease causes significant mortality in both commercially grown and natural pine forests and is an issue of current and growing concern. F. circinatum isolates collected from three locations in the U.S. state of Florida were shown to be virulent on both slash and loblolly pine, with two of the isolates causing equivalent and significantly larger lesions than those caused by the third isolate during pathogenicity trials. In addition, significant genetic variation in lesion length in the pedigreed slash pine population was evident and rankings of parents for lesion length were similar across isolates. Experimental data demonstrate that both host and pathogen genetics contribute to disease severity. High-quality genomic assemblies of all three isolates were created and compared for structural differences and gene content. No major structural differences were observed among the isolates; however, missing or altered genes do contribute to genomic variation in the pathogen population. This work evaluates in planta virulence among three isolates of F. circinatum, provides genomic resources to facilitate study of this organism, and details comparative genomic methods that may be used to explore the pathogen's contribution to disease development.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- James C Fulton
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Katherine E Smith
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, U.S.A
- United States Department of Agriculture Forest Service, Southern Institute of Forest Genetics, Saucier, MS, U.S.A
| | - Jose C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Owen Hudson
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | | | - Tania Quesada
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, U.S.A
| | - Kathleen McKeever
- United States Department of Agriculture Forest Service, Resistance Screening Center, Asheville, NC, U.S.A
| | - Jeremy T Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
2
|
Spontaneous changes in somatic compatibility in Fusarium circinatum. Fungal Biol 2021; 125:725-732. [PMID: 34420699 DOI: 10.1016/j.funbio.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Filamentous fungi grow by the elaboration of hyphae, which may fuse to form a network as a colony develops. Fusion of hyphae can occur between genetically different individuals, provided they share a common allele at loci affecting somatic compatibility. Diversity in somatic compatibility phenotypes reduces the frequency of hyphal fusion in a population, thereby slowing the spread of deleterious genetic elements such as viruses and plasmids, which require direct cytoplasmic contact for transmission. Diverse somatic compatibility phenotypes can be generated by recombining alleles through sexual reproduction, but this mechanism may not fully account for the diversity found in nature. For example, multiple compatibility phenotypes of Fusarium circinatum were shown to be associated with the same clonal lineage, which implies they were derived by a mutation rather than recombination through sexual reproduction. Experimental tests of this hypothesis confirmed that spontaneous changes in somatic compatibility can occur at a frequency between 5 and 8 per million spores. Genomic analysis of F. circinatum strains with altered somatic compatibility revealed no consistent evidence of recombination and supported the hypothesis that a spontaneous mutation generated the observed phenotypic change. Genes known to be involved in somatic compatibility had no mutations, suggesting that mutation occurred in a gene with an as yet unexplored function in somatic compatibility.
Collapse
|