1
|
Mori T, Sugimoto S, Ishii S, Wu J, Nakamura A, Dohra H, Nagai K, Kawagishi H, Hirai H. Biotransformation and detoxification of tetrabromobisphenol A by white-rot fungus Phanerochaete sordida YK-624. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133469. [PMID: 38219585 DOI: 10.1016/j.jhazmat.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The bulky phenolic compound tetrabromobisphenol A (TBBPA) is a brominated flame retardant used in a wide range of products; however, it diffuses into the environment, and has been reported to have toxic effects. Although it is well-known that white-rot fungi degrade TBBPA through ligninolytic enzymes, no other metabolic enzymes have yet been identified, and the toxicity of the reaction products and their risks have not yet been examined. We found that the white-rot fungus Phanerochaete sordida YK-624 converted TBBPA to TBBPA-O-β-D-glucopyranoside when grown under non-ligninolytic-enzyme-producing conditions. The metabolite showed less cytotoxicity and mitochondrial toxicity than TBBPA in neuroblastoma cells. From molecular biological and genetic engineering experiments, two P. sordida glycosyltransferases (PsGT1c and PsGT1e) that catalyze the glycosylation of TBBPA were newly identified; these enzymes showed dramatically different glycosylation activities for TBBPA and bisphenol A. The results of computational analyses indicated that the difference in substrate specificity is likely due to differences in the structure of the substrate-binding pocket. It appears that P. sordida YK-624 takes up TBBPA, and reduces its cytotoxicity via these glycosyltransferases.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Sayaka Sugimoto
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Syouma Ishii
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akihiko Nakamura
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kaoru Nagai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
2
|
Mori T, Dohra H, Kawagishi H, Hirai H. The complete mitochondrial genome of the white-rot fungus Phanerochaete sordida YK-624. Mitochondrial DNA B Resour 2022; 7:1743-1745. [PMID: 36213870 PMCID: PMC9543125 DOI: 10.1080/23802359.2022.2124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The white-rot fungus Phanerochaete sordida (Karsten) Eriksson and Ryvarden 1978 is known for its excellent ligninolytic activity and capability to degrade various recalcitrant organic pollutants. In this study, we determined the complete mitochondrial genome sequence of P. sordida YK-624. The mitochondrial genome is 129,567 bp in length with a GC content of 28.9%, and contains two ribosomal RNA genes, 26 transfer RNA genes, and 50 open reading frames, including 14 conserved proteins. Phylogenetic analysis based on the mitochondrial genome confirmed that P. sordida belongs to the family Phanerochaetaceae in the order Polyporales, and showed the general phylogenetic relationships.
Collapse
Affiliation(s)
- Toshio Mori
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|