Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea.
World J Microbiol Biotechnol 2022;
38:135. [PMID:
35695998 DOI:
10.1007/s11274-022-03327-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse