1
|
Nukuzuma S, Onogi H, Suzuki T. Establishment of COS-BK cells persistently infected with archetype BK polyomavirus. Microbiol Immunol 2024; 68:179-184. [PMID: 38433377 DOI: 10.1111/1348-0421.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
BK polyomavirus (BKPyV) was the first human polyomavirus to be isolated from an immunosuppressed kidney transplant recipient in 1971. BKPyV reactivation causes BKPyV-associated nephropathy and hemorrhagic cystitis. However, the mechanisms underlying BKPyV replication remain unclear. In the present study, we performed the long-term cultivation of COS-7 cells transfected with archetype KOM-5 DNA, which were designated as COS-BK cells. BKPyV derived from COS-BK cells was characterized by analyzing the amount of the virus based on hemagglutination, viral replication, and the production of viral protein 1 (VP1). Immunostaining showed that VP1-positive cells accounted for a small percentage of COS-BK cells. The nucleotide sequences encompassing the origin of the DNA replication of BKPyV derived from COS-BK cells were generated from KOM-5 by the deletion of an 8-bp sequence, which did not involve T antigen binding sites. BKPyV replicated most efficiently in COS-BK cells in DMEM containing 2% fetal bovine serum. These results indicate that COS-BK cells are a suitable culture system for studying the persistent infection of archetype BKPyV.
Collapse
Affiliation(s)
| | | | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
2
|
Procario MC, Sexton JZ, Halligan BS, Imperiale MJ. Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection. Microbiol Spectr 2023; 11:e0087323. [PMID: 37154756 PMCID: PMC10269497 DOI: 10.1128/spectrum.00873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Megan C. Procario
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin S. Halligan
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
An P, Sáenz Robles MT, Cantalupo PG, Naik AS, Sealfon R, Imperiale MJ, Pipas JM. Cultured Renal Proximal Tubular Epithelial Cells Resemble a Stressed/Damaged Kidney While Supporting BK Virus Infection. J Virol 2023; 97:e0034323. [PMID: 37166336 PMCID: PMC10231206 DOI: 10.1128/jvi.00343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Paul G. Cantalupo
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhijit S. Naik
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Zou W, Imperiale MJ. Regulation of Virus Replication by BK Polyomavirus Small T Antigen. J Virol 2023; 97:e0007723. [PMID: 36916919 PMCID: PMC10062181 DOI: 10.1128/jvi.00077-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Polyomavirus small T antigen (tAg) plays important roles in regulating viral replication, the innate immune response, apoptosis, and transformation for SV40, Merkel cell polyomavirus (MCPyV), murine polyomavirus (MuPyV), and JC polyomavirus (JCPyV). However, the function of BK polyomavirus (BKPyV) tAg has been much less studied. Here, we constructed mutant viruses that do not express tAg, and we showed that, in contrast with other polyomaviruses, BKPyV tAg inhibits large T antigen (TAg) gene expression and viral DNA replication. However, this occurs only in an archetype viral background. We also observed that the transduction of cells with a lentivirus-expressing BKPyV tAg kills the cells. We further discovered that BKPyV tAg interacts not only with PP2A A and C subunits, as has been demonstrated for other polyomavirus tAg proteins, but also with PP2A B''' subunit members. Knocking down either of two B''' subunits, namely STRN or STRN3, mimics the phenotype of the tAg mutant virus. However, a virus containing a point mutation in the PP2A binding domain of tAg only partially affected virus TAg expression and DNA replication. These results indicate that BKPyV tAg downregulates viral gene expression and DNA replication and that this occurs in part through interactions with PP2A. IMPORTANCE BK polyomavirus is a virus that establishes a lifelong infection of the majority of people. The infection usually does not cause any clinical symptoms, but, in transplant recipients whose immune systems have been suppressed, unchecked virus replication can cause severe disease. In this study, we show that a viral protein called small T antigen is one of the ways that the virus can persist without high levels of replication. Understanding which factors control viral replication enhances our knowledge of the virus life cycle and could lead to potential interventions for these patients.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Nomburg J, Zou W, Frost TC, Datta C, Vasudevan S, Starrett GJ, Imperiale MJ, Meyerson M, DeCaprio JA. Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathog 2022; 18:e1010401. [PMID: 35363834 PMCID: PMC9007360 DOI: 10.1371/journal.ppat.1010401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/13/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.
Collapse
Affiliation(s)
- Jason Nomburg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas C. Frost
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, Massachusetts, United States of America
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Gabriel J. Starrett
- Laboratory of Cellular Oncology, CCR, NCI, NIH, Bethesda, Maryland, United States of America
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Abstract
BK polyomavirus (BKPyV) is a small nonenveloped DNA virus that establishes a ubiquitous, asymptomatic, and lifelong persistent infection in at least 80% of the world's population. In some immunosuppressed transplant recipients, BKPyV reactivation causes polyomavirus-associated nephropathy and hemorrhagic cystitis. We report a novel in vitro model of BKPyV persistence and reactivation using a BKPyV natural host cell line. In this system, viral genome loads remain constant for various times after establishment of persistent infection, during which BKPyV undergoes extensive random genome recombination. Certain recombination events result in viral DNA amplification and protein expression, resulting in production of viruses with enhanced replication ability.
Collapse
|