1
|
Shang Y, Sun Q, Chen H, Wu Q, Chen M, Yang S, Du M, Zha F, Ye Q, Zhang J. Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2. Front Microbiol 2021; 12:664810. [PMID: 34234757 PMCID: PMC8256156 DOI: 10.3389/fmicb.2021.664810] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a widely distributed foodborne pathogen. The use of Salmonella phages as biocontrol agents has recently gained significant interest. Because the Salmonella genus has high diversity, efforts are necessary to identify lytic Salmonella phages focusing on different serovars. Here, five Salmonella phages were isolated from soil samples, and vB_SalP_TR2 was selected as a novel phage with high lytic potential against the host Salmonella serovar Albany, as well as other tested serovars, including Corvallis, Newport, Kottbus, and Istanbul. Morphological analyses demonstrated that phage vB_SalP_TR2 belongs to the Podoviridae family, with an icosahedral head (62 ± 0.5 nm in diameter and 60 ± 1 nm in length) and a short tail (35 ± 1 nm in length). The latent period and burst size of phage vB_SalP_TR2 was 15 min and 211 PFU/cell, respectively. It contained a linear dsDNA of 71,453 bp, and G + C content was 40.64%. Among 96 putative open reading frames detected, only 35 gene products were found in database searches, with no virulence or antibiotic resistance genes being identified. As a biological control agent, phage vB_SalP_TR2 exhibited a high temperature and pH tolerance. In vitro, it lysed most S. Albany after 24 h at 37°C with multiplicities of infection of 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100. In food matrices (milk and chicken meat), treatment with phage vB_SalP_TR2 also reduced the number of S. Albany compared with that in controls. These findings highlighted phage vB_SalP_TR2 as a potential antibacterial agent for the control of Salmonella in food samples.
Collapse
Affiliation(s)
- Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qifan Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hanfang Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuanghong Yang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingzhu Du
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Zha
- State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, Joint International Research Laboratory on Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Wittmann J, Turner D, Millard AD, Mahadevan P, Kropinski AM, Adriaenssens EM. From Orphan Phage to a Proposed New Family-the Diversity of N4-Like Viruses. Antibiotics (Basel) 2020; 9:E663. [PMID: 33008130 PMCID: PMC7650795 DOI: 10.3390/antibiotics9100663] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia phage N4 was isolated in 1966 in Italy and has remained a genomic orphan for a long time. It encodes an extremely large virion-associated RNA polymerase unique for bacterial viruses that became characteristic for this group. In recent years, due to new and relatively inexpensive sequencing techniques the number of publicly available phage genome sequences expanded rapidly. This revealed new members of the N4-like phage group, from 33 members in 2015 to 115 N4-like viruses in 2020. Using new technologies and methods for classification, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) has moved the classification and taxonomy of bacterial viruses from mere morphological approaches to genomic and proteomic methods. The analysis of 115 N4-like genomes resulted in a huge reassessment of this group and the proposal of a new family "Schitoviridae", including eight subfamilies and numerous new genera.
Collapse
Affiliation(s)
- Johannes Wittmann
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew D. Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH UK;
| | | | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
3
|
Herridge WP, Shibu P, O’Shea J, Brook TC, Hoyles L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 2020; 69:176-194. [PMID: 31976857 PMCID: PMC7431098 DOI: 10.1099/jmm.0.001141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Klebsiella spp. are commensals of the human microbiota, and a leading cause of opportunistic nosocomial infections. The incidence of multidrug resistant (MDR) strains of Klebsiella pneumoniae causing serious infections is increasing, and Klebsiella oxytoca is an emerging pathogen. Alternative strategies to tackle infections caused by these bacteria are required as strains become resistant to last-resort antibiotics such as colistin. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their gene products are now being considered as alternatives or adjuncts to antimicrobial therapies. Several in vitro and in vivo studies have shown the potential for lytic phages to combat MDR K. pneumoniae infections. Ready access to cheap sequencing technologies has led to a large increase in the number of genomes available for Klebsiella-infecting phages, with these phages being heterogeneous at the whole-genome level. This review summarizes our current knowledge on phages of Klebsiella spp. and highlights technological and biological issues relevant to the development of phage-based therapies targeting these bacteria.
Collapse
Affiliation(s)
- Warren P. Herridge
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Preetha Shibu
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Jessica O’Shea
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Thomas C. Brook
- Life Sciences, University of Westminster, 115 Cavendish Street, London W1W 6UW, UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|