1
|
Groussman RD, Blaskowski S, Coesel SN, Armbrust EV. MarFERReT, an open-source, version-controlled reference library of marine microbial eukaryote functional genes. Sci Data 2023; 10:926. [PMID: 38129449 PMCID: PMC10739892 DOI: 10.1038/s41597-023-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Metatranscriptomics generates large volumes of sequence data about transcribed genes in natural environments. Taxonomic annotation of these datasets depends on availability of curated reference sequences. For marine microbial eukaryotes, current reference libraries are limited by gaps in sequenced organism diversity and barriers to updating libraries with new sequence data, resulting in taxonomic annotation of about half of eukaryotic environmental transcripts. Here, we introduce Marine Functional EukaRyotic Reference Taxa (MarFERReT), a marine microbial eukaryotic sequence library designed for use with taxonomic annotation of eukaryotic metatranscriptomes. We gathered 902 publicly accessible marine eukaryote genomes and transcriptomes and assessed their sequence quality and cross-contamination issues, selecting 800 validated entries for inclusion in MarFERReT. Version 1.1 of MarFERReT contains reference sequences from 800 marine eukaryotic genomes and transcriptomes, covering 453 species- and strain-level taxa, totaling nearly 28 million protein sequences with associated NCBI and PR2 Taxonomy identifiers and Pfam functional annotations. The MarFERReT project repository hosts containerized build scripts, documentation on installation and use case examples, and information on new versions of MarFERReT.
Collapse
Affiliation(s)
- R D Groussman
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| | - S Blaskowski
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
- Molecular Engineering and Sciences Institute, University of Washington, Molecular Engineering & Sciences Building 3946 W Stevens Way NE, Seattle, WA, 98195, USA
| | - S N Coesel
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA
| | - E V Armbrust
- School of Oceanography, University of Washington, Benjamin Hall IRB, Room 306 616 NE Northlake Place, Seattle, WA, 98105, USA.
| |
Collapse
|
2
|
Phillips AA, Speth DR, Miller LG, Wang XT, Wu F, Medeiros PM, Monteverde DR, Osburn MR, Berelson WM, Betts HL, Wijker RS, Mullin SW, Johnson HA, Orphan VJ, Fischer WW, Sessions AL. Microbial succession and dynamics in meromictic Mono Lake, California. GEOBIOLOGY 2021; 19:376-393. [PMID: 33629529 PMCID: PMC8359280 DOI: 10.1111/gbi.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 05/30/2023]
Abstract
Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.
Collapse
Affiliation(s)
- Alexandra A. Phillips
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Daan R. Speth
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Laurence G. Miller
- United States Geological Survey, Earth Systems Process DivisionMenlo ParkCAUSA
| | - Xingchen T. Wang
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Earth and Environmental SciencesBoston CollegeChestnut HillMAUSA
| | - Fenfang Wu
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Danielle R. Monteverde
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Magdalena R. Osburn
- Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonILUSA
| | - William M. Berelson
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Reto S. Wijker
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sean W. Mullin
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Hope A. Johnson
- Department of Biological ScienceCalifornia State University FullertonFullertonCAUSA
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Woodward W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2017
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2018
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex L. Sessions
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
3
|
Goudet MMM, Orr DJ, Melkonian M, Müller KH, Meyer MT, Carmo-Silva E, Griffiths H. Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. THE NEW PHYTOLOGIST 2020; 227:810-823. [PMID: 32249430 DOI: 10.1111/nph.16577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 05/19/2023]
Abstract
Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.
Collapse
Affiliation(s)
- Myriam M M Goudet
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, 50674, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Moritz T Meyer
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
4
|
Glabonjat RA, Blum JS, Miller LG, Webb SM, Stolz JF, Francesconi KA, Oremland RS. Arsenolipids in Cultured Picocystis Strain ML and Their Occurrence in Biota and Sediment from Mono Lake, California. Life (Basel) 2020; 10:life10060093. [PMID: 32599768 PMCID: PMC7345539 DOI: 10.3390/life10060093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Primary production in Mono Lake, a hypersaline soda lake rich in dissolved inorganic arsenic, is dominated by Picocystis strain ML. We set out to determine if this photoautotrophic picoplankter could metabolize inorganic arsenic and in doing so form unusual arsenolipids (e.g., arsenic bound to 2-O-methyl ribosides) as reported in other saline ecosystems and by halophilic algae. We cultivated Picocystis strain ML on a seawater-based medium with either low (37 µM) or high (1000 µM) phosphate in the presence of arsenite (400 µM), arsenate (800 µM), or without arsenic additions (ca 0.025 µM). Cultivars formed a variety of organoarsenic compounds, including a phytyl 2-O-methyl arsenosugar, depending upon the cultivation conditions and arsenic exposure. When the cells were grown at low P, the organoarsenicals they produced when exposed to both arsenite and arsenate were primarily arsenolipids (~88%) with only a modest content of water-soluble organoarsenic compounds (e.g., arsenosugars). When grown at high P, sequestration shifted to primarily water-soluble, simple methylated arsenicals such as dimethylarsinate; arsenolipids still constituted ~32% of organoarsenic incorporated into cells exposed to arsenate but < 1% when exposed to arsenite. Curiously, Picocystis strain ML grown at low P and exposed to arsenate sequestered huge amounts of arsenic into the cells accounting for 13.3% of the dry biomass; cells grown at low P and arsenite exposure sequestered much lower amounts, equivalent to 0.35% of dry biomass. Extraction of a resistant phase with trifluoroacetate recovered most of the sequestered arsenic in the form of arsenate. Uptake of arsenate into low P-cultivated cells was confirmed by X-ray fluorescence, while XANES/EXAFS spectra indicated the sequestered arsenic was retained as an inorganic iron precipitate, similar to scorodite, rather than as an As-containing macromolecule. Samples from Mono Lake demonstrated the presence of a wide variety of organoarsenic compounds, including arsenosugar phospholipids, most prevalent in zooplankton (Artemia) and phytoplankton samples, with much lower amounts detected in the bottom sediments. These observations suggest a trophic transfer of organoarsenicals from the phytoplankton (Picocystis) to the zooplankton (Artemia) community, with efficient bacterial mineralization of any lysis-released organoarsenicals back to inorganic oxyanions before they sink to the sediments.
Collapse
Affiliation(s)
- Ronald A. Glabonjat
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria; (R.A.G.); (K.A.F.)
| | - Jodi S. Blum
- Water Mission Area, US Geological Survey, Menlo Park, CA 94025, USA; (J.S.B.); (L.G.M.)
| | - Laurence G. Miller
- Water Mission Area, US Geological Survey, Menlo Park, CA 94025, USA; (J.S.B.); (L.G.M.)
| | - Samuel M. Webb
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA;
| | - John F. Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA;
| | - Kevin A. Francesconi
- Institute of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria; (R.A.G.); (K.A.F.)
| | - Ronald S. Oremland
- Water Mission Area, US Geological Survey, Menlo Park, CA 94025, USA; (J.S.B.); (L.G.M.)
- Correspondence:
| |
Collapse
|