1
|
Gucwa K, Wons E, Wisniewska A, Jakalski M, Dubiak Z, Kozlowski LP, Mruk I. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac. Nucleic Acids Res 2024; 52:2942-2960. [PMID: 38153127 PMCID: PMC11014345 DOI: 10.1093/nar/gkad1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jakalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Zuzanna Dubiak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
2
|
González de Aledo M, Blasco L, Lopez M, Ortiz-Cartagena C, Bleriot I, Pacios O, Hernández-García M, Cantón R, Tomas M. Prophage identification and molecular analysis in the genomes of Pseudomonas aeruginosa strains isolated from critical care patients. mSphere 2023; 8:e0012823. [PMID: 37366636 PMCID: PMC10449497 DOI: 10.1128/msphere.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Prophages are bacteriophages integrated into the bacterial host's chromosome. This research aims to analyze and characterize the existing prophages within a collection of 53 Pseudomonas aeruginosa strains from intensive care units (ICUs) in Portugal and Spain. A total of 113 prophages were localized in the collection, with 18 of them being present in more than one strain simultaneously. After annotation, five of them were discarded as incomplete, and the 13 remaining prophages were characterized. Of 13, 10 belonged to the siphovirus tail morphology group, 2 to the podovirus tail morphology group, and 1 to the myovirus tail morphology group. All prophages had a length ranging from 20,199 to 63,401 bp and a GC% between 56.2% and 63.6%. The number of open reading frames (ORFs) oscillated between 32 and 88, and in 3/13 prophages, more than 50% of the ORFs had an unknown function. With our findings, we show that prophages are present in the majority of the P. aeruginosa strains isolated from Portuguese and Spanish critically ill patients, many of them found in more than one circulating strain at the same time and following a similar clonal distribution pattern. Although a great sum of ORFs had an unknown function, number of proteins in relation to viral defense (anti-CRISPR proteins, toxin/antitoxin modules, proteins against restriction-modification systems) as well as to prophage interference into their host's quorum sensing system and regulatory cascades were found. This supports the idea that prophages have an influence in bacterial pathogenesis and anti-phage defense. IMPORTANCE Despite being known for decades, prophages remain understudied when compared to the lytic phages employed in phage therapy. This research aims to shed some light into the nature, composition, and role of prophages found within a set of circulating strains of Pseudomas aeruginosa, with special attention to high-risk clones. Given the fact that prophages can effectively influence bacterial pathogenesis, prophage basic research constitutes a topic of growing interest. Furthermore, the abundance of viral defense and regulatory proteins within prophage genomes detected in this study evidences the importance of characterizing the most frequent prophages in circulating clinical strains and in high-risk clones if phage therapy is to be used.
Collapse
Affiliation(s)
- Manuel González de Aledo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Blasco
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Maria Lopez
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Concha Ortiz-Cartagena
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Inés Bleriot
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Olga Pacios
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS); CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Maria Tomas
- Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC); Servicio de Microbiología, Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) on behalf of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| |
Collapse
|
3
|
Prolič-Kalinšek M, Volkov AN, Hadži S, Van Dyck J, Bervoets I, Charlier D, Loris R. Structural basis of DNA binding by YdaT, a functional equivalent of the CII repressor in the cryptic prophage CP-933P from Escherichia coli O157:H7. Acta Crystallogr D Struct Biol 2023; 79:245-258. [PMID: 36876434 PMCID: PMC9986795 DOI: 10.1107/s2059798323001249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
YdaT is a functional equivalent of the CII repressor in certain lambdoid phages and prophages. YdaT from the cryptic prophage CP-933P in the genome of Escherichia coli O157:H7 is functional as a DNA-binding protein and recognizes a 5'-TTGATTN6AATCAA-3' inverted repeat. The DNA-binding domain is a helix-turn-helix (HTH)-containing POU domain and is followed by a long α-helix (α6) that forms an antiparallel four-helix bundle, creating a tetramer. The loop between helix α2 and the recognition helix α3 in the HTH motif is unusually long compared with typical HTH motifs, and is highly variable in sequence and length within the YdaT family. The POU domains have a large degree of freedom to move relative to the helix bundle in the free structure, but their orientation becomes fixed upon DNA binding.
Collapse
Affiliation(s)
- Maruša Prolič-Kalinšek
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| | - Alexander N. Volkov
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
- Jean Jeener NMR Center, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jeroen Van Dyck
- Department of Chemistry, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
- VIB–VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
4
|
Wisniewska A, Wons E, Potrykus K, Hinrichs R, Gucwa K, Graumann PL, Mruk I. Molecular basis for lethal cross-talk between two unrelated bacterial transcription factors - the regulatory protein of a restriction-modification system and the repressor of a defective prophage. Nucleic Acids Res 2022; 50:10964-10980. [PMID: 36271797 DOI: 10.1093/nar/gkac914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial gene expression depends on the efficient functioning of global transcriptional networks, however their interconnectivity and orchestration rely mainly on the action of individual DNA binding proteins called transcription factors (TFs). TFs interact not only with their specific target sites, but also with secondary (off-target) sites, and vary in their promiscuity. It is not clear yet what mechanisms govern the interactions with secondary sites, and how such rewiring affects the overall regulatory network, but this could clearly constrain horizontal gene transfer. Here, we show the molecular mechanism of one such off-target interaction between two unrelated TFs in Escherichia coli: the C regulatory protein of a Type II restriction-modification system, and the RacR repressor of a defective prophage. We reveal that the C protein interferes with RacR repressor expression, resulting in derepression of the toxic YdaT protein. These results also provide novel insights into regulation of the racR-ydaST operon. We mapped the C regulator interaction to a specific off-target site, and also visualized C protein dynamics, revealing intriguing differences in single molecule dynamics in different genetic contexts. Our results demonstrate an apparent example of horizontal gene transfer leading to adventitious TF cross-talk with negative effects on the recipient's viability. More broadly, this study represents an experimentally-accessible model of a regulatory constraint on horizontal gene transfer.
Collapse
Affiliation(s)
- Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Rebecca Hinrichs
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Philipps Universität Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
5
|
Bistable Expression of a Toxin-Antitoxin System Located in a Cryptic Prophage of Escherichia coli O157:H7. mBio 2021; 12:e0294721. [PMID: 34844426 PMCID: PMC8630535 DOI: 10.1128/mbio.02947-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin’s DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage.
Collapse
|
6
|
Okaro U, George S, Valdes S, Macaluso K, Anderson B. A non-coding RNA controls transcription of a gene encoding a DNA binding protein that modulates biofilm development in Bartonella henselae. Microb Pathog 2020; 147:104272. [PMID: 32464301 DOI: 10.1016/j.micpath.2020.104272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Bartonella henselae (Bh) is a Gram-negative zoonotic bacterium that can grow as large aggregates and form biofilms in vitro dependent upon the adhesin BadA. Previously, we reported that the Houston-1 strain of Bh has a family of nine small, highly-expressed intergenic transcripts called Bartonellaregulatory transcripts, Brt1-9. Each of the Brts bears a stem and loop structure on the 3' end followed by a gene encoding a DNA binding protein called the Transcriptional regulatory proteins, Trp1-9. RNA-seq analysis of laboratory-grown bacteria revealed the trps were poorly transcribed suggesting that the 3' stem and loop on the Brts results in transcript termination upstream of the trp genes under these conditions. Here we demonstrate that transcription of brt1 continues into trp1 when Bh is grown in a biofilm. Deletion of brt1, or just the 3' terminus of brt1 (containing the stem and loop structure), resulted in increased transcription of both trp1 and badA and increased biofilm formation. Trp1 was shown to directly bind the putative badA promoter region as demonstrated by an electrophoretic mobility shift assay (EMSA). Our data suggest that the 3' end of brt1 responds to a stimulus generated by growth of Bh in an in vitro biofilm to allow increased trp1 transcription. We further show that transcription of trp1 increases under conditions consistent with the mammalian host but is not highly expressed in the cat flea vector until the bacterium is excreted into the flea feces. Based on these data, we hypothesize that the 3' end of Brt1 functions to control trp1 transcription and Trp1 in turn results in increased badA expression and enhanced biofilm formation.
Collapse
Affiliation(s)
- Udoka Okaro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fl, 33612, USA
| | - Sierra George
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fl, 33612, USA
| | - Sabrina Valdes
- Department of Pathological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kevin Macaluso
- Department of Pathological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Burt Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Fl, 33612, USA.
| |
Collapse
|
7
|
Prolič-Kalinšek M, De Bruyn P, Jurėnas D, Van Melderen L, Loris R, Volkov AN. 1H, 13C, and 15N backbone and side chain chemical shift assignment of YdaS, a monomeric member of the HigA family. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:25-30. [PMID: 31625047 DOI: 10.1007/s12104-019-09915-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The cryptic prophage CP-933P in Escherichia coli O157:H7 contains a parDE-like toxin-antitoxin module, the operator region of which is recognized by two flanking transcription regulators: PaaR2 (ParE associated Regulator), which forms part of the paaR2-paaA2-parE2 toxin-antitoxin operon and YdaS (COG4197), which is encoded in the opposite direction but shares the operator. Here we report the 1H, 15N and 13C backbone and side chain chemical shift assignments of YdaS from Escherichia coli O157:H7 in its free state. YdaS is a distinct relative to HigA antitoxins but behaves as a monomer in solution. The BMRB Accession Number is 27917.
Collapse
Affiliation(s)
- Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Dukas Jurėnas
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, Brussels, Belgium.
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Negri A, Jąkalski M, Szczuka A, Pryszcz LP, Mruk I. Transcriptome analyses of cells carrying the Type II Csp231I restriction-modification system reveal cross-talk between two unrelated transcription factors: C protein and the Rac prophage repressor. Nucleic Acids Res 2019; 47:9542-9556. [PMID: 31372643 PMCID: PMC6765115 DOI: 10.1093/nar/gkz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Restriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jąkalski
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Aleksandra Szczuka
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Leszek P Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
9
|
Reply to Jobling, "Ectopic Expression of the ydaS and ydaT Genes of the Cryptic Prophage Rac of Escherichia coli K-12 May Be Toxic but Do They Really Encode Toxins?: a Case for Using Genetic Context To Understand Function". mSphere 2018; 3:3/2/e00177-18. [PMID: 29695627 PMCID: PMC5917430 DOI: 10.1128/msphere.00177-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|