1
|
Bułacz H, Hołówka J, Wójcik W, Zakrzewska-Czerwińska J. MksB is a novel mycobacterial condensin that orchestrates spatiotemporal positioning of replication machinery. Sci Rep 2024; 14:19026. [PMID: 39152186 PMCID: PMC11329512 DOI: 10.1038/s41598-024-70054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.
Collapse
Affiliation(s)
- Hanna Bułacz
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland.
| | - Wiktoria Wójcik
- Department of Molecular Microbiology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
2
|
Zhao H, Peramuna T, Ajmal S, Wendt KL, Petrushenko ZM, Premachandra K, Cichewicz RH, Rybenkov VV. Inhibitor of Chromosome Segregation in Pseudomonas aeruginosa from Fungal Extracts. ACS Chem Biol 2024; 19:1387-1396. [PMID: 38843873 PMCID: PMC11197941 DOI: 10.1021/acschembio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
Chromosome segregation is an essential cellular process that has the potential to yield numerous targets for drug development. This pathway is presently underutilized partially due to the difficulties in the development of robust reporter assays suitable for high throughput screening. In bacteria, chromosome segregation is mediated by two partially redundant systems, condensins and ParABS. Based on the synthetic lethality of the two systems, we developed an assay suitable for screening and then screened a library of fungal extracts for potential inhibitors of the ParABS pathway, as judged by their enhanced activity on condensin-deficient cells. We found such activity in extracts of Humicola sp. Fractionation of the extract led to the discovery of four new analogues of sterigmatocystin, one of which, 4-hydroxy-sterigmatocystin (4HS), displayed antibacterial activity. 4HS induced the phenotype typical for parAB mutants including defects in chromosome segregation and cell division. Specifically, bacteria exposed to 4HS produced anucleate cells and were impaired in the assembly of the FtsZ ring. Moreover, 4HS binds to purified ParB in a ParS-modulated manner and inhibits its ParS-dependent CTPase activity. The data describe a small molecule inhibitor of ParB and expand the known spectrum of activities of sterigmatocystin to include bacterial chromosome segregation.
Collapse
Affiliation(s)
- Hang Zhao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Thilini Peramuna
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sidra Ajmal
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L. Wendt
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zoya M. Petrushenko
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kaushika Premachandra
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H. Cichewicz
- Natural
Products Discovery Group, Institute for Natural Products Applications
and Research Technologies, Department of Chemistry & Biochemistry,
Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Valentin V. Rybenkov
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Diverse Partners of the Partitioning ParB Protein in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0428922. [PMID: 36622167 PMCID: PMC9927451 DOI: 10.1128/spectrum.04289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.
Collapse
|
4
|
Konishi K, Yasutake Y, Muramatsu S, Murata S, Yoshida K, Ishiya K, Aburatani S, Sakasegawa SI, Tamura T. Disruption of SMC-related genes promotes recombinant cholesterol esterase production in Burkholderia stabilis. Appl Microbiol Biotechnol 2022; 106:8093-8110. [PMID: 36399168 DOI: 10.1007/s00253-022-12277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
Burkholderia stabilis strain FERMP-21014 secretes cholesterol esterase (BsChe), which is used in clinical settings to determine serum cholesterol levels. Previously, we constructed an expression plasmid with an endogenous constitutive promoter to enable the production of recombinant BsChe. In this study, we obtained one mutant strain with 13.1-fold higher BsChe activity than the wild type, using N-methyl-N'-nitro-N-nitrosoguanidine as a mutagen. DNA-sequencing analysis revealed that the strain had lost chromosome 3 (∆Chr3), suggesting that the genes hindering BsChe production may be encoded on Chr3. We also identified common mutations in the functionally unknown BSFP_068720/30 genes in the top 10 active strains generated during transposon mutagenesis. As BSFP_068720/30/40 comprised an operon on Chr3, we created the BSFP_068720/30/40 disruption mutant and confirmed that each disruption mutant containing the expression plasmid exhibited ~ 16.1-fold higher BsChe activity than the wild type. Quantitative PCR showed that each disruption mutant and ΔChr3 had a ~ 9.4-fold higher plasmid copy number than the wild type. Structural prediction models indicate that BSFP_068730/40 is structurally homologous to the structural maintenance of chromosomes (SMC) protein MukBE, which is responsible for chromosome segregation during cell division. Conversely, BSFP_068720/30/40 disruption did not lead to a Chr3 drop-out. These results imply that BSFP_068720/30/40 is not a SMC protein but is involved in destabilizing foreign plasmids to prevent the influx of genetic information from the environment. In conclusion, the disruption of BSFP_068720/30/40 improved plasmid stability and copy number, resulting in exceptionally high BsChe production. KEY POINTS: • Disruption of BSFP_068720/30/40 enabled mass production of Burkholderia Che/Lip. • BSFP_068730/40 is an SMC protein homolog not involved in chromosome retention. • BSFP_068720/30/40 is likely responsible for the exclusion of exogenous plasmids.
Collapse
Affiliation(s)
- Kenji Konishi
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan.,Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | | | - Satomi Murata
- Asahi Kasei Pharma Corporation, Shizuoka, 410-2321, Japan
| | - Keitaro Yoshida
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | | | - Tomohiro Tamura
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
| |
Collapse
|
5
|
Deep A, Gu Y, Gao YQ, Ego KM, Herzik MA, Zhou H, Corbett KD. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol Cell 2022; 82:4145-4159.e7. [PMID: 36206765 PMCID: PMC9637719 DOI: 10.1016/j.molcel.2022.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.
Collapse
Affiliation(s)
- Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yong-Qi Gao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaori M Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark A Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Possoz C, Yamaichi Y, Galli E, Ferat JL, Barre FX. Vibrio cholerae Chromosome Partitioning without Polar Anchoring by HubP. Genes (Basel) 2022; 13:genes13050877. [PMID: 35627261 PMCID: PMC9140986 DOI: 10.3390/genes13050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.
Collapse
|
7
|
Zhao H, Clevenger AL, Coburn PS, Callegan MC, Rybenkov V. Condensins are essential for Pseudomonas aeruginosa corneal virulence through their control of lifestyle and virulence programs. Mol Microbiol 2022; 117:937-957. [PMID: 35072315 PMCID: PMC9512581 DOI: 10.1111/mmi.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/01/2022]
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen responsible for numerous human infections. Its high pathogenicity resides in a diverse array of virulence factors and an ability to adapt to hostile environments. We report that these factors are tied to the activity of condensins, SMC and MksBEF, which primarily function in structural chromosome maintenance. This study revealed that both proteins are required for P. aeruginosa virulence during corneal infection. The reduction in virulence was traced to broad changes in gene expression. Transcriptional signatures of smc and mksB mutants were largely dissimilar and non-additive, with the double mutant displaying a distinct gene expression profile. Affected regulons included those responsible for lifestyle control, primary metabolism, surface adhesion and biofilm growth, iron and sulfur assimilation, and numerous virulence factors, including type 3 and type 6 secretion systems. The in vitro phenotypes of condensin mutants mirrored their transcriptional profiles and included impaired production and secretion of multiple virulence factors, growth deficiencies under nutrient limiting conditions, and altered c-di-GMP signaling. Notably, c-di-GMP mediated some but not all transcriptional responses of the mutants. Thus, condensins are integrated into the control of multiple genetic programs related to epigenetic and virulent behavior of P. aeruginosa.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Phillip S. Coburn
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Michelle C. Callegan
- Department of Ophthalmology, the University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd., PA-418, Oklahoma City, OK73104, USA
| | - Valentin Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| |
Collapse
|