1
|
Faktorová D, Záhonová K, Benz C, Dacks JB, Field MC, Lukeš J. Functional differentiation of Sec13 paralogues in the euglenozoan protists. Open Biol 2023; 13:220364. [PMID: 37311539 DOI: 10.1098/rsob.220364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
The β-propeller protein Sec13 plays roles in at least three distinct processes by virtue of being a component of the COPII endoplasmic reticulum export vesicle coat, the nuclear pore complex (NPC) and the Seh1-associated (SEA)/GATOR nutrient-sensing complex. This suggests that regulatory mechanisms coordinating these cellular activities may operate via Sec13. The NPC, COPII and SEA/GATOR are all ancient features of eukaryotic cells, and in the vast majority of eukaryotes, a single Sec13 gene is present. Here we report that the Euglenozoa, a lineage encompassing the diplonemid, kinetoplastid and euglenid protists, possess two Sec13 paralogues. Furthermore, based on protein interactions and localization studies we show that in diplonemids Sec13 functions are divided between the Sec13a and Sec13b paralogues. Specifically, Sec13a interacts with COPII and the NPC, while Sec13b interacts with Sec16 and components of the SEA/GATOR complex. We infer that euglenozoan Sec13a is responsible for NPC functions and canonical anterograde transport activities while Sec13b acts within nutrient and autophagy-related pathways, indicating a fundamentally distinct organization of coatomer complexes in euglenozoan flagellates.
Collapse
Affiliation(s)
- Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
- Life Science Research Centre, Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Corinna Benz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Joel B Dacks
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Mark C Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Bezerra MJR, Moura DMN, Freire ER, Holetz FB, Reis CRS, Monteiro TTS, Pinto ARS, Zhang N, Rezende AM, Pereira-Neves A, Figueiredo RCBQ, Clayton C, Field MC, Carrington M, de Melo Neto OP. Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei. Front Mol Biosci 2022; 9:971811. [PMID: 36275617 PMCID: PMC9585242 DOI: 10.3389/fmolb.2022.971811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
Collapse
Affiliation(s)
- Maria J. R. Bezerra
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Eden R. Freire
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Pernambuco, Brazil
| | | | | | - Adriana R. S. Pinto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | | | - Christine Clayton
- Heidelberg University Center for Molecular Biology, Heidelberg, Germany
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Osvaldo P. de Melo Neto
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- *Correspondence: Osvaldo P. de Melo Neto,
| |
Collapse
|
3
|
Abstract
A hallmark of eukaryotic cells is the ability to form a secretory pathway connecting many intracellular compartments. In the early secretory pathway, coated protein complex II (COPII)-coated vesicles mediate the anterograde transport of newly synthesized secretory cargo from the endoplasmic reticulum to the Golgi apparatus. The COPII coat complex is comprised of an inner layer of Sec23/Sec24 heterodimers and an outer layer of Sec13/Sec31 heterotetramers. In African trypanosomes, there are two paralogues each of Sec23 and Sec24, that form obligate heterodimers (TbSec23.2/TbSec24.1, TbSec23.1/TbSec24.2). It is not known if these form distinct homotypic classes of vesicles or one heterotypic class, but it is known that TbSec23.2/TbSec24.1 specifically mediate forward trafficking of GPI-anchored proteins (GPI-APs) in bloodstream-form trypanosomes (BSF). Here, we showed that this selectivity was lost in insect procyclic stage parasites (PCF). All isoforms of TbSec23 and TbSec24 are essential in PCF parasites as judged by RNAi knockdowns. RNAi silencing of each subunit had equivalent effects on the trafficking of GPI-APs and p67, a transmembrane lysosomal protein. However, silencing of the TbSec23.2/TbSec24.1 had heterodimer had a significant impact on COPII mediated trafficking of soluble TbCatL from the ER to the lysosome. This finding suggests a model in which selectivity of COPII transport was altered between the BSF and PCF trypanosomes, possibly as an adaptation to a digenetic life cycle. IMPORTANCE African trypanosomes synthesize dense surface coats composed of stage-specific glycosylphosphatidylinositol lipid anchored proteins. We previously defined specific machinery in bloodstream stage parasites that mediate the exit of these proteins from the endoplasmic reticulum. Here, we performed similar analyses in the procyclic insect stage and found significant differences in this process. These findings contribute to our understanding of secretory processes in this unusual eukaryotic model system.
Collapse
|
4
|
Turnover of Variant Surface Glycoprotein in Trypanosoma brucei Is Not Altered in Response to Specific Silencing. mSphere 2022; 7:e0012222. [PMID: 35727016 PMCID: PMC9429888 DOI: 10.1128/msphere.00122-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.
Collapse
|
5
|
The endoplasmic reticulum membrane protein complex localizes to the mitochondrial - endoplasmic reticulum interface and its subunits modulate phospholipid biosynthesis in Trypanosoma brucei. PLoS Pathog 2022; 18:e1009717. [PMID: 35500022 PMCID: PMC9113592 DOI: 10.1371/journal.ppat.1009717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 05/17/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
The endoplasmic reticulum membrane complex (EMC) is a versatile complex that plays a key role in membrane protein biogenesis in the ER. Deletion of the complex has wide-ranging consequences including ER stress, disturbance in lipid transport and organelle tethering, among others. Here we report the function and organization of the evolutionarily conserved EMC (TbEMC) in the highly diverged eukaryote, Trypanosoma brucei. Using (co-) immunoprecipitation experiments in combination with mass spectrometry and whole cell proteomic analyses of parasites after depletion of select TbEMC subunits, we demonstrate that the TbEMC is composed of 9 subunits that are present in a high molecular mass complex localizing to the mitochondrial-endoplasmic reticulum interface. Knocking out or knocking down of single TbEMC subunits led to growth defects of T. brucei procyclic forms in culture. Interestingly, we found that depletion of individual TbEMC subunits lead to disruption of de novo synthesis of phosphatidylcholine (PC) or phosphatidylethanolamine (PE), the two most abundant phospholipid classes in T. brucei. Downregulation of TbEMC1 or TbEMC3 inhibited formation of PC while depletion of TbEMC8 inhibited PE synthesis, pointing to a role of the TbEMC in phospholipid synthesis. In addition, we found that in TbEMC7 knock-out parasites, TbEMC3 is released from the complex, implying that TbEMC7 is essential for the formation or the maintenance of the TbEMC.
Collapse
|
6
|
Gupta SK, Ponte-Sucre A, Bencurova E, Dandekar T. An Ebola, Neisseria and Trypanosoma human protein interaction census reveals a conserved human protein cluster targeted by various human pathogens. Comput Struct Biotechnol J 2021; 19:5292-5308. [PMID: 34745452 PMCID: PMC8531761 DOI: 10.1016/j.csbj.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
Filovirus ebolavirus (ZE; Zaire ebolavirus, Bundibugyo ebolavirus), Neisseria meningitidis (NM), and Trypanosoma brucei (Tb) are serious infectious pathogens, spanning viruses, bacteria and protists and all may target the blood and central nervous system during their life cycle. NM and Tb are extracellular pathogens while ZE is obligatory intracellular, targetting immune privileged sites. By using interactomics and comparative evolutionary analysis we studied whether conserved human proteins are targeted by these pathogens. We examined 2797 unique pathogen-targeted human proteins. The information derived from orthology searches of experimentally validated protein-protein interactions (PPIs) resulted both in unique and shared PPIs for each pathogen. Comparing and analyzing conserved and pathogen-specific infection pathways for NM, TB and ZE, we identified human proteins predicted to be targeted in at least two of the compared host-pathogen networks. However, four proteins were common to all three host-pathogen interactomes: the elongation factor 1-alpha 1 (EEF1A1), the SWI/SNF complex subunit SMARCC2 (matrix-associated actin-dependent regulator of chromatin subfamily C), the dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 (RPN1), and the tubulin beta-5 chain (TUBB). These four human proteins all are also involved in cytoskeleton and its regulation and are often addressed by various human pathogens. Specifically, we found (i) 56 human pathogenic bacteria and viruses that target these four proteins, (ii) the well researched new pandemic pathogen SARS-CoV-2 targets two of these four human proteins and (iii) nine human pathogenic fungi (yet another evolutionary distant organism group) target three of the conserved proteins by 130 high confidence interactions.
Collapse
Affiliation(s)
- Shishir K Gupta
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- Evolutionary Genomics Group, Center for Computational and Theoretical Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Alicia Ponte-Sucre
- Laboratorio de Fisiología Molecular, Instituto de Medicina Experimental, Escuela Luis Razetti, Universidad Central de Venezuela, Caracas, Venezuela
- Medical Mission Institute, Hermann-Schell-Str. 7, 97074 Würzburg, Germany
| | - Elena Bencurova
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Dandekar
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany
- EMBL Heidelberg, BioComputing Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
7
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Nihei CI, Nakanishi M. Cargo selection in the early secretory pathway of African trypanosomes. Parasitol Int 2021; 84:102379. [PMID: 34000424 DOI: 10.1016/j.parint.2021.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Membrane and secretory proteins are synthesized by ribosomes and then enter the endoplasmic reticulum (ER) where they undergo glycosylation and quality control for proper folding. Subsequently, proteins are transported to the Golgi apparatus and then sorted to the plasma membrane or intracellular organelles. Transport vesicles are formed at ER-exit sites (ERES) on the ER with several coat protein complexes. Cargo proteins loaded into the vesicles are selected by specific interactions with cargo receptors and/or adaptors during vesicle formation. p24 family and intracellular lectin ERGIC-53-membrane proteins are the known cargo receptors acting in the early secretory pathway (ER-Golgi). Oligomerization of the cargo receptors have been suggested to play an important role in cargo selection and sorting via posttranslational modifications in fungi and metazoans. On the other hand, the mechanisms involved in the early secretory pathway in protozoa remain unclear. In this review, we focus on Trypanosoma brucei as a representative of protozoan and discuss differences and commonalities in the molecular mechanisms of its early secretory pathway compared with other organisms.
Collapse
Affiliation(s)
- Coh-Ichi Nihei
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0023, Japan.
| | - Masayuki Nakanishi
- Laboratory of Biochemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
9
|
Singer M, Frischknecht F. Fluorescent tagging of Plasmodium circumsporozoite protein allows imaging of sporozoite formation but blocks egress from oocysts. Cell Microbiol 2021; 23:e13321. [PMID: 33600048 DOI: 10.1111/cmi.13321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
The circumsporozoite protein, CSP, is the major surface protein of Plasmodium sporozoites, the form of malaria parasites transmitted by mosquitoes. CSP is involved in sporozoite formation within and egress from oocysts, entry into mosquito salivary glands and mammalian liver as well as migration in the skin. Yet, how CSP facilitates sporozoite formation, oocyst egress and hepatocyte specific invasion is still not fully understood. Here, we aimed at generating a series of parasites expressing full-length versions of CSP with internally inserted green fluorescent protein between known domains at the endogenous csp locus. This enabled the investigation of sporozoite formation in living oocysts. GFP insertion after the signal peptide leads to cleavage of GFP before the fusion protein reached the plasma membrane while insertion of GFP before or after the TSR domain prevented sporozoite egress and liver invasion. These data suggest different strategies for obtaining mature salivary gland sporozoites that express GFP-CSP fusions.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Experimental Parasitology, Department for Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| |
Collapse
|
10
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
11
|
Koeller CM, Bangs JD. Processing and targeting of cathepsin L (TbCatL) to the lysosome in
Trypanosoma brucei. Cell Microbiol 2019; 21:e12980. [DOI: 10.1111/cmi.12980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| | - James D. Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| |
Collapse
|
12
|
Bangs JD. Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function. Bioessays 2018; 40:e1800181. [PMID: 30370931 PMCID: PMC6441954 DOI: 10.1002/bies.201800181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years. The basics of VSG structure and switching have been known for several decades, but recent studies have brought higher resolution to many aspects this process. New VSG structures, in silico modeling of infections, studies of VSG codon usage, and experimental ablation of VSG expression provide insights that inform how this remarkable system may have evolved.
Collapse
Affiliation(s)
- James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo NY 14203,
| |
Collapse
|
13
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
14
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|