1
|
Tang K, Hou Y, Cheng L, Zhang Y, Li J, Qin Q, Zheng X, Jia X, Zhang C, Zhuang R, Zhang Y, Jin B, Chen L, Ma Y. Increased blood CD226 - inflammatory monocytes with low antigen presenting potential correlate positively with severity of hemorrhagic fever with renal syndrome. Ann Med 2023; 55:2247000. [PMID: 37585670 PMCID: PMC10435008 DOI: 10.1080/07853890.2023.2247000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Hantaan virus (HTNV) infection can cause severe hemorrhagic fever with renal syndrome (HFRS). Inflammatory monocytes (iMOs) are involved in early antiviral responses. Previous studies have found that blood iMOs numbers increase in the acute phase of HFRS. Here, we further identified the phenotypic characteristics of iMOs in HFRS and explored whether phenotypic changes in iMOs were associated with HFRS severity. MATERIALS AND METHODS Blood samples from 85 HFRS patients were used for phenotypic analysis of iMOs by flow cytometry. Plasma HTNV load was determined using RT-PCR. THP-1 cells overexpressing CD226 were used to investigate the effects of CD226 on HLA-DR/DP/DQ and CD80 expression. A mouse model was used to test macrophage phenotype following HTNV infection. RESULTS The proportion of CD226- iMOs in the acute phase of HFRS was 66.83 (35.05-81.72) %, which was significantly higher than that in the convalescent phase (5.32 (1.36-13.52) %) and normal controls (7.39 (1.15-18.11) %) (p < 0.0001). In the acute phase, the proportion of CD226- iMOs increased more in patients with more severe HFRS and correlated positively with HTNV load and negatively with platelet count. Notably, CD226- iMOs expressed lower levels of HLA-DR/DP/DQ and CD80 than CD226+ iMOs, and overexpression CD226 could enhance the expression of HLA-DR/DP/DQ and CD80. In a mouse model, HTNV also induced the expansion of CD226- macrophages, with decreased expression of I-A/I-E and CD80. CONCLUSIONS CD226- iMOs increased during HTNV infection and the decrease in CD226 hampered the expression of HLA-DR/DP/DQ and CD80, which may promote the immune escape of HTNV and exacerbate clinical symptoms.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yongli Hou
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi’an, P. R. China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Juan Li
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Qi Qin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Xuyang Zheng
- Center for Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Xiaozhou Jia
- Eighth Hospital of Xi’an, Xi’an, Shaanxi, P. R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
2
|
Hong T, Parameswaran S, Donmez OA, Miller D, Forney C, Lape M, Saint Just Ribeiro M, Liang J, Edsall LE, Magnusen AF, Miller W, Chepelev I, Harley JB, Zhao B, Kottyan LC, Weirauch MT. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res 2021; 31:2185-2198. [PMID: 34799401 PMCID: PMC8647835 DOI: 10.1101/gr.264705.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Collapse
Affiliation(s)
- Ted Hong
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Michael Lape
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Albert F Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - William Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio 45229, USA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
3
|
Monocarboxylate transporter antagonism reveals metabolic vulnerabilities of viral-driven lymphomas. Proc Natl Acad Sci U S A 2021; 118:2022495118. [PMID: 34161263 PMCID: PMC8237662 DOI: 10.1073/pnas.2022495118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that typically causes asymptomatic infection but can promote B lymphoid tumors in the immune suppressed. In vitro, EBV infection of primary B cells stimulates glycolysis during immortalization into lymphoblastoid cell lines (LCLs). Lactate export during glycolysis is crucial for continued proliferation of many cancer cells-part of a phenomenon known as the "Warburg effect"- and is mediated by monocarboxylate transporters (MCTs). However, the role of MCTs has yet to be studied in EBV-associated malignancies, which display Warburg-like metabolism in vitro. Here, we show that EBV infection of B lymphocytes directly promotes temporal induction of MCT1 and MCT4 through the viral proteins EBNA2 and LMP1, respectively. Functionally, MCT1 was required for early B cell proliferation, and MCT4 up-regulation promoted acquired resistance to MCT1 antagonism in LCLs. However, dual MCT1/4 inhibition led to LCL growth arrest and lactate buildup. Metabolic profiling in LCLs revealed significantly reduced oxygen consumption rates (OCRs) and NAD+/NADH ratios, contrary to previous observations of increased OCR and unaltered NAD+/NADH ratios in MCT1/4-inhibited cancer cells. Furthermore, U-13C6-glucose labeling of MCT1/4-inhibited LCLs revealed depleted glutathione pools that correlated with elevated reactive oxygen species. Finally, we found that dual MCT1/4 inhibition also sensitized LCLs to killing by the electron transport chain complex I inhibitors phenformin and metformin. These findings were extended to viral lymphomas associated with EBV and the related gammaherpesvirus KSHV, pointing at a therapeutic approach for targeting both viral lymphomas.
Collapse
|
4
|
Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Sci Rep 2020; 10:21342. [PMID: 33288848 PMCID: PMC7721882 DOI: 10.1038/s41598-020-78508-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) may present initially in bone marrow, liver and spleen without any lymphadenopathy (referred to as BLS-type DLBCL), which is aggressive and frequently associated with hemophagocytic syndrome. Its tumorigenesis and molecular mechanisms warrant clarification. By gene microarray profiling with bioinformatics analysis, we found higher expression of the stem cell markers HOXA9 and NANOG, as well as BMP8B, CCR6 and S100A8 in BLS-type than conventional DLBCL. We further validated expression of these markers in a large cohort of DLBCL including BLS-type cases and found that expression of HOXA9 and NANOG correlated with inferior outcome and poor prognostic parameters. Functional studies with gene-overexpressed and gene-silenced DLBCL cell lines showed that expression of NANOG and HOXA9 promoted cell viability and inhibited apoptosis through suppression of G2 arrest in vitro and enhanced tumor formation and hepatosplenic infiltration in a tail-vein-injected mouse model. Additionally, HOXA9-transfected tumor cells showed significantly increased soft-agar clonogenic ability and tumor sphere formation. Interestingly, B cells with higher CCR6 expression revealed a higher chemotactic migration for CCL20. Taken together, our findings support the concept that tumor or precursor cells of BLS-type DLBCL are attracted by chemotaxis and home to the bone marrow, where the microenvironment promotes the expression of stem cell characteristics and aggressiveness of tumor cells.
Collapse
|
5
|
Nagayama‐Hasegawa Y, Honda S, Shibuya A, Shibuya K. Expression and function of DNAM‐1 on human B‐lineage cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:368-374. [DOI: 10.1002/cyto.b.21859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yuko Nagayama‐Hasegawa
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
| | - Shin‐ichiro Honda
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of Tsukuba Tsukuba Ibaraki Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of Tsukuba Tsukuba Ibaraki Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
| |
Collapse
|
6
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|
7
|
Jia X, Zhai T, Wang B, Zhang J, Zhang F. The MAGI2 gene polymorphism rs2160322 is associated with Graves' disease but not with Hashimoto's thyroiditis. J Endocrinol Invest 2019; 42:843-850. [PMID: 30535759 DOI: 10.1007/s40618-018-0990-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Autoimmune thyroid diseases (AITDs) are chronic organ-specific autoimmune disorders, predominantly including Graves' disease (GD), and Hashimoto's thyroiditis (HT). This study aimed to investigate whether single-nucleotide polymorphisms (SNPs) in MAGI2 and MAGI3 gene contributed to the etiology of AITDs. METHODS We conducted a case-control study including 1001 patients with AITDs (625 GD, 376 HT) and 846 healthy controls. Subgroup analyses in GD and HT were also performed. RESULTS The genotypes of rs2160322 in MAGI2 showed a borderline association with AITDs (P = 0.048), and they had a strong correlation with GD (P = 0.012). The frequency of the minor allele G of rs2160322 was significantly higher in the GD patients than in the controls (P = 0.027; OR 1.91; 95% CI 1.020-1.391), especially for GD females (P = 0.008; OR 1.304; 95% CI 1.072-1.587), and those who had positive family history (P = 0.011; OR 1.412; 95% CI 1.083-1.843). For genetic model analysis, the recessive model and homozygous model of rs2160322 showed significant associations with AITDs (P = 0.009; P = 0.019) and GD (P = 0.004; P = 0.005). Nevertheless, our study could not identify any relationship between these SNPs and HT. Due to the low mutation rate of rs1343126 in MAGI3, we were unable to obtain a credible conclusion on its association with AITDs. CONCLUSIONS Our study identified that MAGI2 rs2160322 was strongly associated with GD susceptibility. The potential dysfunction of tight junction proteins and aberrant epithelial barrier caused by abnormal MAGI2 expression may be a novel mechanism of GD.
Collapse
Affiliation(s)
- X Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - T Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital of Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - B Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - J Zhang
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| | - F Zhang
- Department of Emergency, Jinshan Hospital of Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|