1
|
Clavero-Camacho I, Ruiz-Cuenca AN, Cantalapiedra-Navarrete C, Castillo P, Palomares-Rius JE. Diversity of microbial, biocontrol agents and nematode abundance on a susceptible Prunus rootstock under a Meloidogyne root gradient infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1386535. [PMID: 39376243 PMCID: PMC11456498 DOI: 10.3389/fpls.2024.1386535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Root-knot nematodes (RKNs) of the genus Meloidogyne are one of the most damaging genera to cultivated woody plants with a worldwide distribution. The knowledge of the soil and rhizosphere microbiota of almonds infested with Meloidogyne could help to establish new sustainable and efficient management strategies. However, the soil microbiota interaction in deciduous woody plants infected with RKNs is scarcely studied. This research was carried out in six commercial almond groves located in southern Spain and infested with different levels of Meloidogyne spp. within each grove. Several parameters were measured: nematode assemblages, levels and biocontrol agents in Meloidogyne's eggs, levels of specific biocontrol agents in rhizoplane and soil, levels of bacteria and fungi in rhizoplane and soil, fungal and bacterial communities by high-throughput sequencing of internal transcribed spacer (ITS), and 16S rRNA gene in soil and rhizosphere of the susceptible almond hybrid rootstock GF-677 infested with Meloidogyne spp. The studied almond groves showed soil degradation by nematode assemblies and fungi:bacterial ratio. Fungal parasites of Meloidogyne eggs were found in 56.25% of the samples. However, the percentage of parasitized eggs by fungi ranged from 1% to 8%. Three fungal species were isolated from Meloidogyne eggs, specifically Pochonia chlamydosporia, Purpureocillium lilacinum, and Trichoderma asperellum. The diversity and composition of the microbial communities were more affected by the sample type (soil vs rhizosphere) and by the geographical location of the samples than by the Meloidogyne density, which could be explained by the vigorous hybrid rootstock GF-677 and a possible dilution effect. However, the saprotrophic function in the functional guilds of the fungal ASV was increased in the highly infected roots vs the low infected roots. These results indicate that the presence of biocontrol agents in almond fields and the development of new management strategies could increase their populations to control partially RKN infection levels.
Collapse
Affiliation(s)
- Ilenia Clavero-Camacho
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
- Instituto de Estudios de Postgrado, Departamento de Agronomía, Universidad de Córdoba, Cordoba, Spain
| | - Alba N. Ruiz-Cuenca
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
- Departament of Animal Plant Biology and Ecology, Universidad de Jaén, Jaén, Spain
| | | | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
| | - Juan E. Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Cordoba, Spain
| |
Collapse
|
2
|
Gao J, Chen L, Wang J, Zhao W, Zhang J, Qin Z, Wang M, Chen X, Li M, Yang Q. Response of the Symbiotic Microbial Community of Dioscorea opposita Cultivar Tiegun to Root-Knot Nematode Infection. PLANT DISEASE 2024; 108:2472-2483. [PMID: 38549276 DOI: 10.1094/pdis-01-24-0169-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and how endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cultivar Tiegun. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16 to 40 cm than those at a depth of 0 to 15 and 41 to 70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial α-diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.
Collapse
Affiliation(s)
- Jin Gao
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Liting Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Jingjing Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Weichao Zhao
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Jiangli Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhao Qin
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Mingzhu Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| | - Xia Chen
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg 93053, Germany
| | - Mingjun Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Habteweld A, Kantor M, Kantor C, Handoo Z. Understanding the dynamic interactions of root-knot nematodes and their host: role of plant growth promoting bacteria and abiotic factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1377453. [PMID: 38745927 PMCID: PMC11091308 DOI: 10.3389/fpls.2024.1377453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive endoparasitic nematodes worldwide, often leading to a reduction of crop growth and yield. Insights into the dynamics of host-RKN interactions, especially in varied biotic and abiotic environments, could be pivotal in devising novel RKN mitigation measures. Plant growth-promoting bacteria (PGPB) involves different plant growth-enhancing activities such as biofertilization, pathogen suppression, and induction of systemic resistance. We summarized the up-to-date knowledge on the role of PGPB and abiotic factors such as soil pH, texture, structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or indirectly affected by different PGPB, abiotic factors interplay in the interactions, and host responses to RKN infection. We highlighted the tripartite (host-RKN-PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-host interactions; (ii) host influence in the selection and enrichment of PGPB in the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating the tripartite interactions. Furthermore, we discussed how different agricultural practices alter the interactions. Finally, we emphasized the importance of incorporating the knowledge of tripartite interactions in the integrated RKN management strategies.
Collapse
Affiliation(s)
- Alemayehu Habteweld
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, Beltsville, MD, United States
| | - Mihail Kantor
- Plant Pathology and Environmental Microbiology Department, Pennsylvania State University, University Park, PA, United States
| | - Camelia Kantor
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Zafar Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, Beltsville, MD, United States
| |
Collapse
|
4
|
Topalović O, Geisen S. Nematodes as suppressors and facilitators of plant performance. THE NEW PHYTOLOGIST 2023; 238:2305-2312. [PMID: 37010088 DOI: 10.1111/nph.18925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/26/2023] [Indexed: 05/19/2023]
Abstract
Plant-nematode interactions are mainly considered from the negative aspect with a focus on plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by PPNs. Despite the fact that PPNs are outnumbered by nonparasitic free-living nematodes (FLNs), the functional importance of FLNs, especially with regard to plant performance, remains largely unknown. Here, we provide a comprehensive overview and most recent insights into soil nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance. We especially emphasize the knowledge gaps and potential of FLNs as important indirect players in driving plant performance such as stimulating the resistance to pests via improving the disease suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as positive and negative contributors to plant performance, accentuating the positive but underexplored role of FLNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| | - Stefan Geisen
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| |
Collapse
|
5
|
Qu L, Dai K, Wang J, Cao L, Rao Z, Han R. Microbial landscapes of the rhizosphere soils and roots of Luffa cylindrica plant associated with Meloidogyne incognita. Front Microbiol 2023; 14:1168179. [PMID: 37303801 PMCID: PMC10247985 DOI: 10.3389/fmicb.2023.1168179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The root-knot nematodes (RKN), especially Meloidogyne spp., are globally emerging harmful animals for many agricultural crops. Methods To explore microbial agents for biological control of these nematodes, the microbial communities of the rhizosphere soils and roots of sponge gourd (Luffa cylindrica) infected and non-infected by M. incognita nematodes, were investigated using culture-dependent and -independent methods. Results Thirty-two culturable bacterial and eight fungal species, along with 10,561 bacterial and 2,427 fungal operational taxonomic units (OTUs), were identified. Nine culturable bacterial species, 955 bacterial and 701 fungal OTUs were shared in both four groups. More culturable bacterial and fungal isolates were detected from the uninfected soils and roots than from the infected soils and roots (except no fungi detected from the uninfected roots), and among all samples, nine bacterial species (Arthrobacter sp., Bacillus sp., Burkholderia ambifaria, Enterobacteriaceae sp., Fictibacillus barbaricus, Microbacterium sp., Micrococcaceae sp., Rhizobiaceae sp., and Serratia sp.) were shared, with Arthrobacter sp. and Bacillus sp. being dominant. Pseudomonas nitroreducens was exclusively present in the infested soils, while Mammaliicoccus sciuri, Microbacterium azadirachtae, and Priestia sp., together with Mucor irregularis, Penicillium sp., P. commune, and Sordariomycetes sp. were found only in the uninfected soils. Cupriavidus metallidurans, Gordonia sp., Streptomyces viridobrunneus, and Terribacillus sp. were only in the uninfected roots while Aspergillus sp. only in infected roots. After M. incognita infestation, 319 bacterial OTUs (such as Chryseobacterium) and 171 fungal OTUs (such as Spizellomyces) were increased in rhizosphere soils, while 181 bacterial OTUs (such as Pasteuria) and 166 fungal OTUs (such as Exophiala) rose their abundance in plant roots. Meanwhile, much more decreased bacterial or fungal OTUs were identified from rhizosphere soils rather than from plant roots, exhibiting the protective effects of host plant on endophytes. Among the detected bacterial isolates, Streptomyces sp. TR27 was discovered to exhibit nematocidal activity, and B. amyloliquefaciens, Bacillus sp. P35, and M. azadirachtae to show repellent potentials for the second stage M. incognita juveniles, which can be used to develop RKN bio-control agents. Discussion These findings provided insights into the interactions among root-knot nematodes, host plants, and microorganisms, which will inspire explorations of novel nematicides.
Collapse
|
6
|
Hajji-Hedfi L, Hlaoua W, Rhouma A, Al-Judaibi AA, Arcos SC, Robertson L, Ciordia S, Horrigue-Raouani N, Navas A, Abdel-Azeem AM. Biological and proteomic analysis of a new isolate of the nematophagous fungus lecanicillium sp. BMC Microbiol 2023; 23:108. [PMID: 37081392 PMCID: PMC10116813 DOI: 10.1186/s12866-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND In our continuing search for biologically active natural enemies from North of Africa with special reference to Tunisian fungi, our teamwork screened fungi from different ecological habitats in Tunisia. Our previous study on the comparative effectiveness of filamentous fungi in the biocontrol of Meloidogyne javanica, a taxon (Lecanicillium) showed high potentiality against M. javanica. We undertook the present study to evaluate the ability and understand the mechanism of this fungal parasite as a biological control candidate against the root-knot nematode M. javanica. This study used in vitro bioassays with fungal filtrate cultures, scanning electron microscopy (SEM) observation, and isobaric tag for relative and absolute quantitation (iTRAQ) methodology to characterize the biological and molecular features of this fungus. RESULTS The microscopic and SEM observation revealed that Lecanicillium sp. exhibited exceptional hyperparasitism against M. javanica eggs. The hyphae of this fungi penetrated the eggs, causing destructive damage to the outer eggshell. The exposure to five concentrations of Lecanicillium sp. filtrate cultures showed high inhibition of egg hatching, which increases depending on the exposure time; the best results are recorded at 50%, 75%, and 100% dilutions after seven days of exposure. The SEM observation of nematode-parasitized eggs and juveniles suggests that the production of lytic enzymes degrades the egg cuticle and fungal hyphae penetrate unhatched M.javanica juveniles. Forty-seven unique proteins were identified from the Lecanicillium sp. isolate. These proteins have signalling and stress response functions, bioenergy, metabolism, and protein synthesis and degradation. CONCLUSION Collectively, Lecanicillium sp. had ovicidal potentiality proved by SEM and proteomic analysis against root-knot nematode' eggs. This study recommended applying this biological control candidate as a bio-agent on vegetable crops grown in situ.
Collapse
Affiliation(s)
- Lobna Hajji-Hedfi
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia.
| | - Wassila Hlaoua
- Department of Plant Protection and Biological Sciences, Higher Agronomic Institute of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Abdelhak Rhouma
- Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Gafsa Road Km 6, B.P. 357, Sidi Bouzid, 9100, Tunisia
| | - Awatif A Al-Judaibi
- Department of Biological Sciences-Microbiology Section, Faculty of Science, Jeddah University, Jeddah, 21959, Saudi Arabia
| | - Susana Cobacho Arcos
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Lee Robertson
- Dpto Protección Vegetal. Instituto Nacional de Investigaciones Agrarias. Carretera de la Coruña, Km 7, Madrid, 28040, Spain
| | - Sergio Ciordia
- Unidad de Proteómica Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Najet Horrigue-Raouani
- Department of Plant Protection and Biological Sciences, Higher Agronomic Institute of Chott-Meriem, University of Sousse, Sousse, Tunisia
| | - Alfonso Navas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Ahmed M Abdel-Azeem
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
7
|
Li Y, Lei S, Cheng Z, Jin L, Zhang T, Liang LM, Cheng L, Zhang Q, Xu X, Lan C, Lu C, Mo M, Zhang KQ, Xu J, Tian B. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. MICROBIOME 2023; 11:48. [PMID: 36895023 PMCID: PMC9999639 DOI: 10.1186/s40168-023-01484-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKN) are among the most important root-damaging plant-parasitic nematodes, causing severe crop losses worldwide. The plant rhizosphere and root endosphere contain rich and diverse bacterial communities. However, little is known about how RKN and root bacteria interact to impact parasitism and plant health. Determining the keystone microbial taxa and their functional contributions to plant health and RKN development is important for understanding RKN parasitism and developing efficient biological control strategies in agriculture. RESULTS The analyses of rhizosphere and root endosphere microbiota of plants with and without RKN showed that host species, developmental stage, ecological niche, and nematode parasitism, as well as most of their interactions, contributed significantly to variations in root-associated microbiota. Compared with healthy tomato plants at different developmental stages, significant enrichments of bacteria belonging to Rhizobiales, Betaproteobacteriales, and Rhodobacterales were observed in the endophytic microbiota of nematode-parasitized root samples. Functional pathways related to bacterial pathogenesis and biological nitrogen fixation were significantly enriched in nematode-parasitized plants. In addition, we observed significant enrichments of the nifH gene and NifH protein, the key gene/enzyme involved in biological nitrogen fixation, within nematode-parasitized roots, consistent with a potential functional contribution of nitrogen-fixing bacteria to nematode parasitism. Data from a further assay showed that soil nitrogen amendment could reduce both endophytic nitrogen-fixing bacteria and RKN prevalence and galling in tomato plants. CONCLUSIONS Results demonstrated that (1) community variation and assembly of root endophytic microbiota were significantly affected by RKN parasitism; (2) a taxonomic and functional association was found for endophytic nitrogen-fixing bacteria and nematode parasitism; and (3) the change of nitrogen-fixing bacterial communities through the addition of nitrogen fertilizers could affect the occurrence of RKN. Our results provide new insights into interactions among endophytic microbiota, RKN, and plants, contributing to the potential development of novel management strategies against RKN. Video Abstract.
Collapse
Affiliation(s)
- Ye Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Shaonan Lei
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Zhiqiang Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lingyue Jin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Ting Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Linjie Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Qinyi Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Xiaohong Xu
- Library, Fujian Normal University, Fuzhou, 350108, Fujian, China
| | - Canhua Lan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Chaojun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Baoyu Tian
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation and College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
8
|
Zhang Z, Zhang Q, Cui H, Li Y, Xu N, Lu T, Chen J, Penuelas J, Hu B, Qian H. Composition identification and functional verification of bacterial community in disease-suppressive soils by machine learning. Environ Microbiol 2022; 24:3405-3419. [PMID: 35049096 DOI: 10.1111/1462-2920.15902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
It has been widely reported that probiotic consortia in the rhizosphere can enhance the plant resistance to pathogens. However, the general composition and functional profiles of bacterial community in soils which suppress multiple diseases for various plants remain largely unknown. Here, we combined metadata analysis with machine learning to identify the general patterns of bacterial-community composition in disease-suppressive soils. Disease-suppressive soils significantly enriched Firmicutes and Actinobacteria but showed a decrease in Proteobacteria and Bacteroidetes. Our machine-learning models accurately identified the disease-conducive and -suppressive soils with 54 biomarker genera, 28 of which were potentially beneficial. We further carried out a successive passaging experiment with the susceptible rps2 mutant of Arabidopsis thaliana invaded by Pseudomonas syringae pv. tomato DC3000 (avrRpt2) for functional verification of potential beneficial bacteria. The disease-suppressive ability of Kribbella, Nocardioides and Bacillus was confirmed, and they positively activated the pathogen-associated molecular patterns-triggered immunity pathway. Results also showed that chemical control by pesticides in agricultural production decreased the disease-suppressive ability of soil. This study provides a method for accurately predicting the occurrence of multiple diseases in soil and identified potential beneficial bacteria to guide a wide range of multiple-strain biological control strategies in agricultural management.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.,CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Baolan Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| |
Collapse
|
9
|
Kashinskaya EN, Simonov EP, Vlasenko PG, Markevich GN, Shokurova AV, Andree KB, Solovyev MM. The gut microbiota of Cystidicola farionis parasitizing the swim bladder of the nosed charr morph Salvelinus malma complex in Lake Kronotskoe (Kamchatka, Russia). J Nematol 2021; 53:e2021-106. [PMID: 34957411 PMCID: PMC8672423 DOI: 10.21307/jofnem-2021-106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/23/2022] Open
Abstract
Using the approach of sequencing the V3–V4 region of the 16S rRNA gene, we have analyzed the bacterial diversity associated with the gut and “body” (other parts of nematode after dissection: cuticle, epidermis and longitudinal muscles, etc) of Cystidicola farionis parasitizing the swim bladder of different morphotypes of the nosed charr. Comparisons of the gut microbiota of nematodes with their “body” has revealed that the associated microbiota are closely related to each other. Taxonomic analysis indicated that the relative abundances of the dominant nematode-associated bacteria varied with individual fish. The common dominant microbiota of the gut and “body” of nematodes were represented by Aeromonas, Pseudomonas, Shewanella, and Yersinia, while the associated microbiota of the swim bladder of the nosed charr was dominated by Acinetobacter, Cetobacterium, Pajaroellobacter, Paracoccus, Pseudomonas, Shewanella. By comparing the associated microbiota of nematode parasitizing the different morphotypes of the nosed charr the difference in richness estimates (number of OTU’s and Chao1) were revealed between the N1g and N2 morphs.
Collapse
Affiliation(s)
- E N Kashinskaya
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | - E P Simonov
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia.,University of Tyumen, Institute of Environmental and Agricultural Biology (X-BIO), 25 Lenina St., Tyumen, 625003, Russia
| | - P G Vlasenko
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | | | - A V Shokurova
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia
| | - K B Andree
- Instituto de Investigación y Tecnología Agroalimentarias; Cultius Aquàtics; San Carlos de la Rapita, Tarragona, ES 08140, Spain
| | - M M Solovyev
- Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences; Research group of physiology and genetics of hydrobionts; Frunze St. 11, Novosibirsk, 630091, Russia.,Tomsk State University; Institute of Biology, Ecology, Soil Science, Agriculture, and Forestry; 36 Lenin Ave, Tomsk, 634050, Russia
| |
Collapse
|
10
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|