1
|
Calegario G, Freitas L, Appolinario LR, Venas T, Arruda T, Otsuki K, Masi B, Omachi C, Moreira AP, Soares AC, Rezende CE, Garcia G, Tschoeke D, Thompson C, Thompson FL. Conserved rhodolith microbiomes across environmental gradients of the Great Amazon Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143411. [PMID: 33243513 DOI: 10.1016/j.scitotenv.2020.143411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The Great Amazon Reef System (GARS) covers an estimated area of 56,000 km2 off the mouth of the Amazon River. Living rhodolith holobionts are major benthic components of the GARS. However, it is unclear whether environmental conditions modulate the rhodolith microbiomes. Previous studies suggest that environmental parameters such as light, temperature, depth, and nutrients are drivers of rhodolith health. However, it is unclear whether rhodoliths from different sectors (northern, central, and southern) from the GARS have different microbiomes. We analysed metagenomes of rhodoliths (n = 10) and seawater (n = 6), obtained from the three sectors, by illumina shotgun sequencing (total read counts: 25.73 million). Suspended particulate material and isotopic composition of dissolved organic carbon (δ13C) indicated a strong influence of the Amazon river plume over the entire study area. However, photosynthetically active radiation at the bottom (PARb) was higher in the southern sector reefs, ranging from 10.1 to 14.3 E.m-2 day-1. The coralline calcareous red algae (CCA) Corallina caespitosa, Corallina officinalis, Lithophyllum cabiochiae, and Hapalidiales were present in the three sectors and in most rhodolith samples. Rhodolith microbiomes were very homogeneous across the studied area and differed significantly from seawater microbiomes. However, some subtle differences were found when comparing the rhodolith microbiomes from the northern and central sectors to the ones from the southern. Consistent with the higher light availability, two phyla were more abundant in rhodolith microbiomes from southern sites (Bacteroidetes, and Cyanobacteria). In addition, two functional categories were enhanced in southern rhodolith microbiomes (iron acquisition and metabolism, and photosynthesis). Phycobiliprotein-coding genes were also more abundant in southern locations, while the functional categories of respiration and sulfur metabolism were enhanced in northern and central rhodolith microbiomes, consistent with higher nutrient loads. The results confirm the conserved nature of rhodolith microbiomes even under pronounced environmental gradients. Subtle taxonomic and functional differences observed in rhodolith microbiomes may enable rhodoliths to thrive in changing environmental conditions.
Collapse
Affiliation(s)
- Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Freitas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Reis Appolinario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Taina Venas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tatiane Arruda
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Koko Otsuki
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Masi
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Omachi
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Universidade de São Paulo, Instituto Oceanográfico, Laboratório de Indicadores Ambientais, São Paulo, Brazil
| | - Ana Paula Moreira
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana Carolina Soares
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Universidade Estadual Norte Fluminense (UENF), Campos, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Pinto OHB, Silva TF, Vizzotto CS, Santana RH, Lopes FAC, Silva BS, Thompson FL, Kruger RH. Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume. BMC Microbiol 2020; 20:13. [PMID: 31941452 PMCID: PMC6964070 DOI: 10.1186/s12866-020-1698-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022] Open
Abstract
Background Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. Results The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation. However, ammonia-monooxygenase genes were detected only in ThauP41 and ThauR71. Glycoside hydrolases and auxiliary activities genes were detected only in ThauP25. Conclusions Our data indicate that Amazon River is a source of Thaumarchaeota, where these organisms are important for primary production, vitamin production, and nitrification.
Collapse
Affiliation(s)
- Otávio H B Pinto
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil
| | - Thais F Silva
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil
| | - Carla S Vizzotto
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil.,Department of Civil and Environmental Engineering, University of Brasília, Brasilia, 70910-900, Brazil
| | | | - Fabyano A C Lopes
- Laboratory of Microbiology, Federal University of Tocantins, Palmas, 77500-000, Brazil
| | - Bruno S Silva
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Ricardo H Kruger
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil.
| |
Collapse
|
3
|
Bekliz M, Brandani J, Bourquin M, Battin TJ, Peter H. Benchmarking protocols for the metagenomic analysis of stream biofilm viromes. PeerJ 2019; 7:e8187. [PMID: 31879573 PMCID: PMC6927355 DOI: 10.7717/peerj.8187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses drive microbial diversity, function and evolution and influence important biogeochemical cycles in aquatic ecosystems. Despite their relevance, we currently lack an understanding of their potential impacts on stream biofilm structure and function. This is surprising given the critical role of biofilms for stream ecosystem processes. Currently, the study of viruses in stream biofilms is hindered by the lack of an optimized protocol for their extraction, concentration and purification. Here, we evaluate a range of methods to separate viral particles from stream biofilms, and to concentrate and purify them prior to DNA extraction and metagenome sequencing. Based on epifluorescence microscopy counts of viral-like particles (VLP) and DNA yields, we optimize a protocol including treatment with tetrasodium pyrophosphate and ultra-sonication to disintegrate biofilms, tangential-flow filtration to extract and concentrate VLP, followed by ultracentrifugation in a sucrose density gradient to isolate VLP from the biofilm slurry. Viromes derived from biofilms sampled from three different streams were dominated by Siphoviridae, Myoviridae and Podoviridae and provide first insights into the viral diversity of stream biofilms. Our protocol optimization provides an important step towards a better understanding of the ecological role of viruses in stream biofilms.
Collapse
Affiliation(s)
- Meriem Bekliz
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Jade Brandani
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Massimo Bourquin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Okazaki Y, Nishimura Y, Yoshida T, Ogata H, Nakano SI. Genome-resolved viral and cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake. Environ Microbiol 2019; 21:4740-4754. [PMID: 31608575 DOI: 10.1111/1462-2920.14816] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/21/2023]
Abstract
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22-5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Yosuke Nishimura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
5
|
Metagenomic Analysis of Virioplankton from the Pelagic Zone of Lake Baikal. Viruses 2019; 11:v11110991. [PMID: 31671744 PMCID: PMC6893740 DOI: 10.3390/v11110991] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
This study describes two viral communities from the world’s oldest lake, Lake Baikal. For the analysis, we chose under-ice and late spring periods of the year as the most productive for Lake Baikal. These periods show the maximum seasonal biomass of phytoplankton and bacterioplankton, which are targets for viruses, including bacteriophages. At that time, the main group of viruses were tailed bacteriophages of the order Caudovirales that belong to the families Myoviridae, Siphoviridae and Podoviridae. Annotation of functional genes revealed that during the under-ice period, the “Phages, Prophages, Transposable Elements and Plasmids” (27.4%) category represented the bulk of the virome. In the late spring period, it comprised 9.6% of the virome. We assembled contigs by two methods: Separately assembled in each virome or cross-assembled. A comparative analysis of the Baikal viromes with other aquatic environments indicated a distribution pattern by soil, marine and freshwater groups. Viromes of lakes Baikal, Michigan, Erie and Ontario form the joint World’s Largest Lakes clade.
Collapse
|
6
|
Cordeiro MC, Garcia GD, Rocha AM, Tschoeke DA, Campeão ME, Appolinario LR, Soares AC, Leomil L, Froes A, Bahiense L, Rezende CE, de Almeida MG, Rangel TP, De Oliveira BCV, de Almeida DQR, Thompson MC, Thompson CC, Thompson FL. Insights on the freshwater microbiomes metabolic changes associated with the world's largest mining disaster. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1209-1217. [PMID: 30841395 DOI: 10.1016/j.scitotenv.2018.11.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
To evaluate the impacts of the Fundão tailings dam failure (Minas Gerais, Brazil) on water quality of the Doce River, we analyzed metagenomics and physicochemical parameters during the month of the disaster and again 6 and 10 months after the disaster. To compare dam conditions before and after the failure, we performed a meta-analysis of physicochemical data from a public database. Immediately after the failure, suspended particulate matter (SPM) in the Doce River was 225-1877 mg L-1. Turbidity and dissolved aluminum and iron concentrations were extremely high, whereas dissolved oxygen was below Brazilian legislation norm (<5 mg L-1) in several locations. Six months later, physicochemical values were below thresholds set by Brazilian guidelines (e.g., SPM = 8-166 mg L-1). Short-term impacts on microbial communities included an increase in Actinobacteria and Bacteroidetes and gene sequences related to microbial virulence, motility, respiration, membrane transport, iron and nitrogen metabolism, suggesting changes in microbial metabolic profiles. The 11 recovered partial genomes from metagenomes (MAGs) had genes related to Fe cycle and metal resistance.
Collapse
Affiliation(s)
- Marcelle C Cordeiro
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Gizele D Garcia
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil; Departamento de Ensino de Graduação - Universidade Federal do Rio de Janeiro - Campus UFRJ - Macaé Professor Aloisio Teixeira, Macaé, Rio de Janeiro, 27930-480, Brazil
| | - André M Rocha
- Systems Engineering and Computer Science Program at COPPE/UFRJ, Avenida Horácio Macedo 2030, Brazil
| | - Diogo A Tschoeke
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Mariana E Campeão
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Luciana R Appolinario
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Ana C Soares
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Luciana Leomil
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Adriana Froes
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Laura Bahiense
- Systems Engineering and Computer Science Program at COPPE/UFRJ, Avenida Horácio Macedo 2030, Brazil
| | - Carlos E Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Marcelo G de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Thiago P Rangel
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Braulio Cherene Vaz De Oliveira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | - Diogo Q R de Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, 28015-620 Campos dos Goytacazes, RJ, Brazil
| | | | - Cristiane C Thompson
- Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Fabiano L Thompson
- Núcleo Professor Rogerio Valle de Produção Sustentável-SAGE/COPPE, Centro de Gestão Tecnológica-CT2, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Instituto de Biologia, CCS, Laboratório de Microbiologia, Anexo ao Bloco A, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|