1
|
Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, Gull K, Lukeš J. Comprehensive sub-mitochondrial protein map of the parasitic protist Trypanosoma brucei defines critical features of organellar biology. Cell Rep 2023; 42:113083. [PMID: 37669165 DOI: 10.1016/j.celrep.2023.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
We have generated a high-confidence mitochondrial proteome (MitoTag) of the Trypanosoma brucei procyclic stage containing 1,239 proteins. For 337 of these, a mitochondrial localization had not been described before. We use the TrypTag dataset as a foundation and take advantage of the properties of the fluorescent protein tag that causes aberrant but fortuitous accumulation of tagged matrix and inner membrane proteins near the kinetoplast (mitochondrial DNA). Combined with transmembrane domain predictions, this characteristic allowed categorization of 1,053 proteins into mitochondrial sub-compartments, the detection of unique matrix-localized fucose and methionine synthesis, and the identification of new kinetoplast proteins, which showed kinetoplast-linked pyrimidine synthesis. Moreover, disruption of targeting signals by tagging allowed mapping of the mode of protein targeting to these sub-compartments, identifying a set of C-tail anchored outer mitochondrial membrane proteins and mitochondrial carriers likely employing multiple target peptides. This dataset represents a comprehensive, updated mapping of the mitochondrion.
Collapse
Affiliation(s)
- Jan Pyrih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, University of Cambridge, Cambridge, UK; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | | | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
2
|
Moloney NM, Barylyuk K, Tromer E, Crook OM, Breckels LM, Lilley KS, Waller RF, MacGregor P. Mapping diversity in African trypanosomes using high resolution spatial proteomics. Nat Commun 2023; 14:4401. [PMID: 37479728 PMCID: PMC10361982 DOI: 10.1038/s41467-023-40125-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
African trypanosomes are dixenous eukaryotic parasites that impose a significant human and veterinary disease burden on sub-Saharan Africa. Diversity between species and life-cycle stages is concomitant with distinct host and tissue tropisms within this group. Here, the spatial proteomes of two African trypanosome species, Trypanosoma brucei and Trypanosoma congolense, are mapped across two life-stages. The four resulting datasets provide evidence of expression of approximately 5500 proteins per cell-type. Over 2500 proteins per cell-type are classified to specific subcellular compartments, providing four comprehensive spatial proteomes. Comparative analysis reveals key routes of parasitic adaptation to different biological niches and provides insight into the molecular basis for diversity within and between these pathogen species.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Eelco Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
3
|
Paris Z, Svobodová M, Kachale A, Horáková E, Nenarokova A, Lukeš J. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA Trp to decode the UGA codon in Trypanosoma brucei. RNA Biol 2021; 18:278-286. [PMID: 34224320 PMCID: PMC8677022 DOI: 10.1080/15476286.2021.1940445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In kinetoplastid protists, all mitochondrial tRNAs are encoded in the nucleus and imported from the cytoplasm to maintain organellar translation. This also applies to the tryptophanyl tRNA (tRNATrp) encoded by a single-copy nuclear gene, with a CCA anticodon to read UGG codon used in the cytosolic translation. Yet, in the mitochondrion it is unable to decode the UGA codon specifying tryptophan. Following mitochondrial import of tRNATrp, this problem is solved at the RNA level by a single C34 to U34 editing event that creates the UCA anticodon, recognizing UGA. To identify the enzyme responsible for this critical editing activity, we scrutinized the genome of Trypanosoma brucei for putative cytidine deaminases as the most likely candidates. Using RNAi silencing and poisoned primer extension, we have identified a novel deaminase enzyme, named here TbmCDAT for mitochondrial Cytidine Deaminase Acting on tRNA, which is responsible for this organelle-specific activity in T. brucei. The ablation of TbmCDAT led to the downregulation of mitochondrial protein synthesis, supporting its role in decoding the UGA tryptophan codon.
Collapse
Affiliation(s)
- Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic
| | - Ambar Kachale
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Budweis, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Budweis, Czech Republic
| |
Collapse
|
4
|
Yagüe-Capilla M, Castillo-Acosta VM, Bosch-Navarrete C, Ruiz-Pérez LM, González-Pacanowska D. A Mitochondrial Orthologue of the dNTP Triphosphohydrolase SAMHD1 Is Essential and Controls Pyrimidine Homeostasis in Trypanosoma brucei. ACS Infect Dis 2021; 7:318-332. [PMID: 33417760 DOI: 10.1021/acsinfecdis.0c00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maintenance of deoxyribonucleotide triphosphate (dNTP) homeostasis through synthesis and degradation is critical for accurate genomic and mitochondrial DNA replication fidelity. Trypanosoma brucei makes use of both the salvage and de novo pathways for the provision of pyrimidine dNTPs. In this respect, the sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) appears to be the most relevant dNTPase controlling dNTP/deoxynucleoside homeostasis in mammalian cells. Here, we have characterized the role of a unique trypanosomal SAMHD1 orthologue denominated TbHD52. Our results show that TbHD52 is a mitochondrial enzyme essential in bloodstream forms of T. brucei. Knockout cells are pyrimidine auxotrophs that exhibit strong defects in genomic integrity, cell cycle progression, and nuclear DNA and kinetoplast segregation in the absence of extracellular thymidine. The lack of TbHD52 can be counteracted by the overexpression of human dCMP deaminase, an enzyme that is directly involved in dUMP formation yet absent in trypanosomes. Furthermore, the cellular dNTP quantification and metabolomic analysis of TbHD52 null mutants revealed perturbations in the nucleotide metabolism with a substantial accumulation of dCTP and cytosine-derived metabolites while dTTP formation was significantly reduced. We propose that this HD-domain-containing protein unique to kinetoplastids plays an essential role in pyrimidine dNTP homeostasis and contributes to the provision of deoxycytidine required for cellular dTTP biosynthesis.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada) 18016, Spain
| |
Collapse
|
5
|
Liu W, Shang F, Chen Y, Lan J, Wang L, Chen J, Gao P, Ha NC, Quan C, Nam KH, Xu Y. Biochemical and structural analysis of the Klebsiella pneumoniae cytidine deaminase CDA. Biochem Biophys Res Commun 2019; 519:280-286. [PMID: 31495495 DOI: 10.1016/j.bbrc.2019.08.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
Abstract
The emergence of drug-resistant strains of Klebsiella pneumoniae, has exacerbated the treatment and control of the disease caused by this bacterium. Cytidine deaminases (CDA) are zinc-dependent enzymes involved in the pyrimidine salvage pathway and catalyze the formation of uridine and deoxyuridine from cytidine and deoxycytidine, respectively. To illustrate the structural basis of CDA for a deeper knowledge of the molecular mechanisms underlying the salvage pathway, we reported here the biochemical and structural analysis of CDA from pathogenic K. pneumonia. KpCDA showed deaminase activity against cytidine as well as its analog cytarabine. The deaminase activity of KpCDA on cytarabine was 1.8 times higher than that on cytidine. KpCDA is composed of an N-terminal catalytic domain and a C-terminal noncatalytic domain. Zinc, which is involved in the activity of the catalytic domain, is coordinated by His102, Cys129, and Cys132, and two 1,4-dioxane molecules were present at the active sites. KpCDA exists as a dimer and shows distinct dimeric interface compared with other CDAs. Our results provide the structural features of KpCDA, and KpCDA might be a potential antibacterial target for the disease caused by K. pneumoniae.
Collapse
Affiliation(s)
- Wei Liu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Fei Shang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yuanyuan Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China; School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Jinli Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital, Dalian, 116024, Liaoning, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|