1
|
Wang G, Ma P, Mo S, Liu W, Chen T, Huang Z, Xie J. Chemical characterization, antioxidant activity and activation of macrophages RAW264.7 via MAPK signaling pathway of the exopolysaccharide from Penicillium EF-2. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39912408 DOI: 10.1002/jsfa.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Microbial exopolysaccharides represent a significant source of polysaccharides, with their production unconstrained by temporal or spatial limitations. Penicillium, a filamentous fungus widely recognized for its medicinal food applications, is known to produce exopolysaccharides that exhibit cancer-inhibitory properties. RESULTS In the present study, exopolysaccharides from Penicillium EF-2 (EPS) were extracted and structurally characterized using ion chromatograph, infrared spectroscopy and NMR. The in vitro antioxidant and immunomodulatory activities were also investigated. EPS has a molecular weight of 111.47 kDa, is primarily composed of mannose, glucose and galactose, possesses a crystalline region, and exhibits excellent thermal properties. In free radical scavenging assays, EPS demonstrated robust in vitro antioxidant activity. Furthermore, EPS activated the mitogen-activated protein kinase pathway, enhancing the immunomodulatory capacity of macrophages. CONCLUSION EPS has excellent antioxidant and biological activities. The present study provides a theoretical basis for the utilization of EPS and offers new ideas for active sources of Penicillium fermented foods. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ping Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shiru Mo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Wendong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Sahu N, Mahanty B, Haldar D. Challenges and opportunities in bioprocessing of gellan gum: A review. Int J Biol Macromol 2024; 276:133912. [PMID: 39025193 DOI: 10.1016/j.ijbiomac.2024.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Gellan gum (GG) - the microbial exopolysaccharide is increasingly being adopted into drug development, tissue engineering, and food and pharmaceutical products. In spite of the commercial importance and expanding application horizon of GG, little attention has been directed toward the exploration of novel microbial cultures, development of advanced screening protocols, strain engineering, and robust upstream or downstream processes. This comprehensive review not only attempts to summarize the existing knowledge pool on GG bioprocess but also critically assesses their inherent challenges. The process optimization design augmented with advanced machine learning modeling tools, widely adopted in other microbial bioprocesses, should be extended to GG. The unification of mechanistic insight into data-driven modeling would help to formulate optimal feeding and process control strategies.
Collapse
Affiliation(s)
- Nageswar Sahu
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Biswanath Mahanty
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
3
|
García-Romero I, de Dios R, Reyes-Ramírez F. An improved genome editing system for Sphingomonadaceae. Access Microbiol 2024; 6:000755.v3. [PMID: 38868378 PMCID: PMC11165598 DOI: 10.1099/acmi.0.000755.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
The sphingomonads encompass a diverse group of bacteria within the family Sphingomonadaceae, with the presence of sphingolipids on their cell surface instead of lipopolysaccharide as their main common feature. They are particularly interesting for bioremediation purposes due to their ability to degrade or metabolise a variety of recalcitrant organic pollutants. However, research and development on their full bioremediation potential has been hampered because of the limited number of tools available to investigate and modify their genome. Here, we present a markerless genome editing method for Sphingopyxis granuli TFA, which can be further optimised for other sphingomonads. This procedure is based on a double recombination triggered by a DNA double-strand break in the chromosome. The strength of this protocol lies in forcing the second recombination rather than favouring it by pressing a counterselection marker, thus avoiding laborious restreaking or passaging screenings. Additionally, we introduce a modification with respect to the original protocol to increase the efficiency of the screening after the first recombination event. We show this procedure step by step and compare our modified method with respect to the original one by deleting ecfG2, the master regulator of the general stress response in S. granuli TFA. This adds to the genetic tool repertoire that can be applied to sphingomonads and stands as an efficient option for fast genome editing of this bacterial group.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| | - Rubén de Dios
- Division of Biosciences, Department of Life Sciences, Centre of Inflammation Research and Translational Medicine, College of Health, Medicine and Life Sciences,, Brunel University London, Uxbridge, UK
| | - Francisca Reyes-Ramírez
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Dev MJ, Mahajan GB, Warke RG, Warke GM, Patil TA, Satardekar MR, Dalvi RC, Singhal RS. Mutagenesis enhances gellan gum production by a novel Sphingomonas spp.: upstream optimization, kinetic modeling, and structural and physico-functional evaluation. Int Microbiol 2024; 27:459-476. [PMID: 37495894 DOI: 10.1007/s10123-023-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett-Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300-600 rpm), and aeration (0.5-2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, India
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Girish B Mahajan
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rahul G Warke
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Gangadhar M Warke
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Tanuja A Patil
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Milan R Satardekar
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rachana C Dalvi
- Department of Microbiology, HiMedia Laboratories Pvt. Ltd, Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
5
|
Liu Y, Lu W, Li Y, Zhai B, Zhang B, Qin H, Xu P, Yang Y, Fan S, Wang Y, Li C, Zhao J, Ai J. Diversity of Endophytes of Actinidia arguta in Different Seasons. Life (Basel) 2024; 14:149. [PMID: 38276278 PMCID: PMC10819999 DOI: 10.3390/life14010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.
Collapse
Affiliation(s)
- Yingxue Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Boyu Zhai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Baoxiang Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Peilei Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yue Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Changyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Jun Ai
- College of Horticulture, Jilin Agricultural University, Changchun 130112, China
| |
Collapse
|
6
|
Wu M, Zheng K, Li W, He W, Qian C, Lin Z, Xiao H, Yang H, Xu Y, Wei M, Bai J, Geng D. Nature‐Inspired Strategies for the Treatment of Osteoarthritis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202305603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage is devoid of nerves and blood vessels, and its nutrients must be obtained from the joint fluid; therefore, its ability to repair itself is limited. Manufactured materials such as artificial cartilage or synthetic materials are typically used in traditional approaches for knee cartilage repair. However, durability, postimplant rejection, and tissue incompatibility are the problems associated with these materials. In recent decades, tissue engineering and regenerative medicine have focused on the development of functional substitutes, particularly those based on naturally inspired biopolymers. This review focuses on sustainably produced biopolymers based on materials derived from natural sources. Furthermore, these materials have many advantages, including low antigenicity, biocompatibility, and degradability. Of course, there are also many challenges associated with natural materials, such as the lack of clinical studies and long‐term follow‐up data, unstable mechanical properties of the materials, and high demands placed on preparation and molding techniques. In this review, an overview of natural and nature‐inspired polymers that are the subject of research to date, as well as their structural designs and product performances is provided. This review provides scientific guidance for enhancing the development of naturally inspired materials for treating cartilage injuries.
Collapse
Affiliation(s)
- Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 140 Renmin South Road Suzhou Jiangsu 215400 China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
- National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai 215031 China
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu 210004 China
| | - Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Minggang Wei
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| |
Collapse
|
7
|
Sun L, Yue M, Yang L, Ding X, Wang Y, Liu Y, Sun W. Biosynthesis and physicochemical properties of low molecular weight gellan produced by a high-yield mutant of Sphingomonas paucimobilis ATCC 31461. Int J Biol Macromol 2023; 242:124899. [PMID: 37196715 DOI: 10.1016/j.ijbiomac.2023.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Gellan gum (GG) is used in many industries. Here, we obtained a low molecular weight GG (L-GG) directly produced by M155, the high-yield mutant strain of Sphingomonas paucimobilis ATCC 31461, which was selected using UV-ARTP combined mutagenesis. The molecular weight of L-GG was 44.6 % lesser than that of the initial GG (I-GG), and the GG yield increased by 24 %. The monosaccharide composition and Fourier transform-infrared spectroscopic patterns of L-GG were similar to those of I-GG, which indicated that the decrease in the molecular weight of L-GG was probably because of reduction in the degree of polymerization. In addition, microstructural analysis revealed that the surface of L-GG was rougher, with smaller pores and tighter network, than that of I-GG. L-GG showed low hardness, gumminess, and chewiness, which are indicative of better taste. The results of rheological analysis revealed that the L-GG solution is a typical non-Newtonian fluid with low viscoelasticity, which exhibited stable dynamic viscoelasticity within 20-65 °C. To the best of our knowledge, this is the first report of direct biosynthesis of low molecular weight GG during fermentation, which will reduce the manufacturing costs. Our observations provide a reference for precise and expanded applications of GG.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Meixiang Yue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xialiang Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yazhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Li J, Wu H, Pu Q, Zhang C, Chen Y, Lin Z, Hu X, Li O. Complete genome of Sphingomonas paucimobilis ZJSH1, an endophytic bacterium from Dendrobium officinale with stress resistance and growth promotion potential. Arch Microbiol 2023; 205:132. [PMID: 36959350 DOI: 10.1007/s00203-023-03459-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
Sphingomonas paucimobilis ZJSH1 is an endophytic bacterium isolated from the roots of Dendrobium officinale with the ability to promote plant growth. It was found that the genome of strain ZJSH1 had gene fragment rearrangement compared with the genomes of the other four strains of S. paucimobilis, and the genome was integrated with phage genes. Functional analysis showed that the strain contained colonization-related genes, chemotaxis and invasion. A variety of genes encoding active materials, such as hormones (IAA, SA, ABA and zeaxanthin), phosphate cycle, antioxidant enzymes, and polysaccharides were identified which provide the strain with growth promotion and stress-resistant characteristics. Experiments proved that S. paucimobilis ZJSH1 grew well in media containing 80 g/L sodium chloride, 240 g/L polyethylene glycol and 800 μmol/L Cd2+, indicating its potential for resistance to stresses of salt, drought and cadmium, respectively. S. paucimobilis ZJSH1 is the only endophytic bacterium of this species that has been reported to promote plant growth. The analysis of its genome is conducive to understanding its growth-promoting mechanism and laying a foundation for the development and utilization of this species in the field of agriculture.
Collapse
Affiliation(s)
- Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Hangtao Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Chu Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Zhengxin Lin
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China.
| | - Ou Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 928th Second Avenue, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
9
|
Rapid Screening of High-Yield Gellan Gum Mutants of Sphingomonas paucimobilis ATCC 31461 by Combining Atmospheric and Room Temperature Plasma Mutation with Near-Infrared Spectroscopy Monitoring. Foods 2022; 11:foods11244078. [PMID: 36553820 PMCID: PMC9777525 DOI: 10.3390/foods11244078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, an efficient mutagenesis and rapid screening method of high-yield gellan gum mutant by atmospheric and room temperature plasma (ARTP) treatment combined with Near-Infrared Spectroscopy (NIRS) was proposed. A NIRS model for the on-line detection of gellan gum yield was constructed by joint interval partial least squares (siPLS) regression on the basis of chemical determination and NIRS acquisition of gellan gum yield. Five genetically stable mutant strains were screened using the on-line NIRS detection of gellan gum yield in the fermentation from approximately 600 mutant strains induced by ARTP. Remarkably, compared with the original strain, the gellan gum yield of mutant strain 519 was 9.427 g/L (increased by 133.5%) under the optimal fermentation conditions, which was determined by single-factor and response surface optimization. Therefore, the method of ARTP mutation combined with the NIRS model can be used to screen high-yield mutant strains of gellan gum and other high-yield polysaccharide strains.
Collapse
|
10
|
Dev MJ, Warke RG, Warke GM, Mahajan GB, Patil TA, Singhal RS. Advances in fermentative production, purification, characterization and applications of gellan gum. BIORESOURCE TECHNOLOGY 2022; 359:127498. [PMID: 35724911 DOI: 10.1016/j.biortech.2022.127498] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rahul G Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Gangadhar M Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Girish B Mahajan
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Tanuja A Patil
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
11
|
Huang H, Lin J, Wang W, Li S. Biopolymers Produced by Sphingomonas Strains and Their Potential Applications in Petroleum Production. Polymers (Basel) 2022; 14:1920. [PMID: 35567089 PMCID: PMC9104527 DOI: 10.3390/polym14091920] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Sphingomonas was established by Yabuuchi et al. in 1990, and has attracted much attention in recent years due to its unique ability to degrade environmental pollutants. Some Sphingomonas species can secrete high-molecular-weight extracellular polymers called sphingans, most of which are acidic heteropolysaccharides. Typical sphingans include welan gum, gellan gum, and diutan gum. Most sphingans have a typical, conserved main chain structure, and differences of side chain groups lead to different rheological characteristics, such as shear thinning, temperature or salt resistance, and viscoelasticity. In petroleum production applications, sphingans, and their structurally modified derivatives can replace partially hydrolyzed polyacrylamide (HPAM) for enhanced oil recovery (EOR) in high-temperature and high-salt reservoirs, while also being able to replace guar gum as a fracturing fluid thickener. This paper focuses on the applications of sphingans and their derivatives in EOR.
Collapse
Affiliation(s)
- Haolin Huang
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| | - Junzhang Lin
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257000, China; (J.L.); (W.W.)
| | - Shuang Li
- College of Biotechnology and Pharmaceutical Engineering, Jiangpu Campus, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
12
|
Wollschlaeger JO, Maatz R, Albrecht FB, Klatt A, Heine S, Blaeser A, Kluger PJ. Scaffolds for Cultured Meat on the Basis of Polysaccharide Hydrogels Enriched with Plant-Based Proteins. Gels 2022; 8:94. [PMID: 35200476 PMCID: PMC8871916 DOI: 10.3390/gels8020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The world population is growing and alternative ways of satisfying the increasing demand for meat are being explored, such as using animal cells for the fabrication of cultured meat. Edible biomaterials are required as supporting structures. Hence, we chose agarose, gellan and a xanthan-locust bean gum blend (XLB) as support materials with pea and soy protein additives and analyzed them regarding material properties and biocompatibility. We successfully built stable hydrogels containing up to 1% pea or soy protein. Higher amounts of protein resulted in poor handling properties and unstable gels. The gelation temperature range for agarose and gellan blends is between 23-30 °C, but for XLB blends it is above 55 °C. A change in viscosity and a decrease in the swelling behavior was observed in the polysaccharide-protein gels compared to the pure polysaccharide gels. None of the leachates of the investigated materials had cytotoxic effects on the myoblast cell line C2C12. All polysaccharide-protein blends evaluated turned out as potential candidates for cultured meat. For cell-laden gels, the gellan blends were the most suitable in terms of processing and uniform distribution of cells, followed by agarose blends, whereas no stable cell-laden gels could be formed with XLB blends.
Collapse
Affiliation(s)
- Jannis O. Wollschlaeger
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Robin Maatz
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
| | - Franziska B. Albrecht
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Simon Heine
- Reutlingen Research Institute, Reutlingen University, 72762 Reutlingen, Germany; (J.O.W.); (F.B.A.); (A.K.); (S.H.)
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, 64289 Darmstadt, Germany; (R.M.); (A.B.)
- Centre for Synthetic Biology, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
13
|
Ke C, Wei L, Wang M, Li Q, Liu X, Guo Y, Li S. Effect of NaCl addition on the production of welan gum with the UV mutant of Sphingomonas sp. Carbohydr Polym 2021; 265:118110. [PMID: 33966819 DOI: 10.1016/j.carbpol.2021.118110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023]
Abstract
Because of its excellent stability, non-toxicity, biodegradability and unique rheology, welan gum can be widely used in various fields, such as petroleum, biomedicine and food products. In this study, a high-yield mutant strain FM01-S09 was screened through two rounds of UV mutagenesis. Remarkably, the production of welan gum could be further increased by adding 4 mM NaCl at 32 h fermentation, reaching 30.12 ± 0.25 g/L (28.66% higher than no adding), and the NaCl-WG solution had stronger structural, impact resistance, and temperature resistance than H2O2-WG and WG solutions. Furthermore, the mechanism by which NaCl promotes welan gum synthesis was also investigated. It was found that cell membrane characteristics, intracellular microenvironment makeup, and key enzyme gene expression levels were significantly altered in different fermentation stages. Therefore, the addition of NaCl could effectively promote the growth and fermentation performance of Sphingomonas sp., providing a novel strategy for cost-effective welan gum production.
Collapse
Affiliation(s)
- Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiwen Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Synthesis of the Microbial Polysaccharide Gellan from Dairy and Plant-Based Processing Coproducts. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review examines the production of the microbial polysaccharide gellan, synthesized by Sphingomonas elodea, on dairy and plant-based processing coproducts. Gellan is a water-soluble gum that structurally exists as a tetrasaccharide comprised of 20% glucuronic acid, 60% glucose and 20% rhamnose, for which various food, non-food and biomedical applications have been reported. A number of carbon and nitrogen sources have been tested to determine whether they can support bacterial gellan production, with several studies attempting to optimize gellan production by varying the culture conditions. The genetics of the biosynthesis of gellan has been explored in a number of investigations and specific genes have been identified that encode the enzymes responsible for the synthesis of this polysaccharide. Genetic mutants exhibiting overproduction of gellan have also been identified and characterized. Several dairy and plant-based processing coproducts have been screened to learn whether they can support the production of gellan in an attempt to lower the cost of synthesizing the microbial polysaccharide. Of the processing coproducts explored, soluble starch as a carbon source supported the highest gellan production by S. elodea grown at 30 °C. The corn processing coproducts corn steep liquor or condensed distillers solubles appear to be effective nitrogen sources for gellan production. It was concluded that further research on producing gellan using a combination of processing coproducts could be an effective solution in lowering its overall production costs.
Collapse
|
15
|
De Paula DCC, Leite EA, Araujo CM, Branquinho RT, Guimarães HN, Grabe-Guimarães A. Caspofungin Effects on Electrocardiogram of Mice: An Evaluation of Cardiac Safety. Cardiovasc Toxicol 2020; 21:93-105. [PMID: 32845461 DOI: 10.1007/s12012-020-09599-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Abstract
Caspofungin is an echinocandin, exhibiting efficacy against most Candida species invasive infection. Its cardiotoxicity was reported in isolated rat heart and ventricular myocytes, but in vivo and clinical studies are insufficient. Our objective was to evaluate caspofungin in vivo cardiac effects using an efficacious dose against Candida albicans. Female Swiss mice were infected with C. albicans, and treated with caspofungin, 5 or 10 mg/kg, intraperitoneal along 5 days. Survival rate and colony-forming units (CFU) into vital organs were determined. For cardiac effects study, mice were treated with caspofungin 10 mg/kg, and electrocardiogram (ECG) signal was obtained on C. albicans-infected mice, single dose-treated, and uninfected mice treated along 5 days, both groups to measure ECG intervals. Besides, ECG was also obtained by telemetry on uninfected mice to evaluate heart rate variability (HRV) parameters. The MIC for caspofungin on the wild-type C. albicans SC5314 strain was 0.3 μg/ml, indicating the susceptible. Survival rate increased significantly in infected mice treated with caspofungin compared to mice treated with vehicle. None of the survived infected mice presented positive CFU after treatment with 10 mg/kg. C. albicans infection induced prolongation of QRS, QT, and QTc intervals; caspofungin did not alter this effect. Caspofungin induced increase of PR and an additional increase of QRS after 24 h of a single dose in infected mice. No significant alterations occurred in ECG intervals and HRV parameters of uninfected mice, after caspofungin treatment. Caspofungin showed in vivo cardiac relative safety maintaining its antifungal efficacy against C. albicans.
Collapse
Affiliation(s)
- Danielle Cristiane Correa De Paula
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Morais Araujo
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Renata Tupinambá Branquinho
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Homero Nogueira Guimarães
- Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Grabe-Guimarães
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|