1
|
Santos Barbosa CRD, Menezes Dantas DD, Bezerra SR, Rocha JE, Freitas Alexandre PR, Marinho ES, Queiroz Almeida-Neto FWD, Tintino SR, Ribeiro de Sousa G, Barbosa-Filho JM, Souza-Ferrari JD, Costa MRD, Coutinho HDM, Teixeira AMR, Santos HSD, Cunha FABD. Electronic properties and adjuvant effect of riparins I-IV: Inhibition of β-lactamase and QacC efflux pump in Staphylococcus aureus K4100. Biochem Biophys Res Commun 2025; 758:151636. [PMID: 40112534 DOI: 10.1016/j.bbrc.2025.151636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Staphylococcus aureus is a leading cause of nosocomial infections, posing a significant health threat due to its resistance mechanisms, particularly involving β-lactamase enzymes and efflux pumps. Targeting these mechanisms is crucial to restore the efficacy of antibiotics. This study characterized the electronic properties of riparins I, II, III, and IV and evaluated their effects on the β-lactamase enzyme and the QacC efflux pump in the S. aureus K4100 strain. The electronic properties of the riparins revealed distinct electrophilic characteristics, but similar nucleophilic behavior, as indicated by the HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) orbital energy values. Microbiological testing showed that riparins I, II, III, and IV did not display direct antibacterial activity against S. aureus K4100. However, riparin III significantly reduced the MIC of oxacillin, suggesting it potentiates the antibiotic's effect, likely by targeting the β-lactamase enzyme. Furthermore, riparins II and III lowered the MIC of ethidium bromide, indicating their potential as inhibitors of the QacC efflux pump. These findings highlight the potential of riparins II and III as adjuvants to enhance the effectiveness of antibiotics against multidrug-resistant strains of S. aureus.
Collapse
Affiliation(s)
| | - Débora de Menezes Dantas
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, 63105-000, CE, Brazil
| | - Suieny Rodrigues Bezerra
- Laboratory of Bioprospection of Semiarid and Alternative Methods of the Regional University of Cariri - LABSEMA, Crato, Cear'a, Brazil.
| | - Janaína Esmeraldo Rocha
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, 63105-000, CE, Brazil.
| | | | - Emmanuel Silva Marinho
- Center for Exact Sciences and Technology, State University of Ceará (UECE), Fortaleza, 60714-903, CE, Brazil.
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, 63105-000, CE, Brazil.
| | - Gabriela Ribeiro de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, 58051-900, PB, Brazil
| | - José Maria Barbosa-Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, 58051-900, PB, Brazil.
| | | | | | - Henrique Douglas Melo Coutinho
- Coordinator of the Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato, CE, Brazil.
| | | | - Hélcio Silva Dos Santos
- Program Rede Nordeste de Biotecnologia (RENORBIO-Nucleadora UECE), Universidade Estadual Vale do Acaraú (UVA), Sobral, CE, Brazil.
| | | |
Collapse
|
2
|
Kamal MA, Salem HM, Alhotan RA, Hussein EO, Galik B, Saleh AA, Kaoud HA. Unraveling Antimicrobial Resistance Dynamics in Mycoplasma gallisepticum: Insights Into Antibiotic and Disinfectant Interactions. Vet Med Sci 2025; 11:e70181. [PMID: 39792050 PMCID: PMC11720739 DOI: 10.1002/vms3.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/30/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC50, and/or the MIC90. The statistical associations between the MICs of the antibiotics and biocides were investigated using regression model analysis and correlation coefficients. The absence of a cell wall in MG inherently confers resistance to beta-lactams, thereby necessitating the utilization of enrofloxacin, difloxacin, flumequine, oxytetracycline, chlortetracycline, doxycycline, tylosin, tilmicosin, tylvalosin, erythromycin, spiramycin, tiamulin, lincomycin, spectinomycin and dihydrostreptomycin. These antibiotics exhibited MIC50 values of 0.5, 0.5, 0.12, 0.062, 0.12, 0.031, 0.016, 0.016, 0.062, 16, 1, 0.008, 2, 0.5 and 32, respectively. In addition to antibiotics, disinfectants have garnered attention for their contribution to the development of AMR in MG. Notably, formalin, phenol, NADES, Halamid, Virkon-S, MicroSet and SteriSet exhibited MIC50 values of 125, 500, 31.25, 15.63, 15.63, 7.81 and 62.5, respectively. Significant positive correlations and direct associations were identified between various biocides and the development of antibiotic resistance, with coefficients ranging from 0.098 to 1.176. This research highlights the intricate nature of resistance profiles in MG and underscores the necessity for a thorough understanding of antimicrobial interactions. This finding emphasizes the importance of managing emerging AMR stemming from disinfectant misuse in the poultry farms to prevent additional constraints on antibiotic treatment options.
Collapse
Affiliation(s)
- Mohamed A. Kamal
- Department of Veterinary Hygiene and Management, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food & Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
| | | | - Branislav Galik
- Institute of Nutrition and GenomicsSlovak University of Agriculture in NitraNitraSlovakia
| | - Ahmed A. Saleh
- Department of Poultry Production, Faculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Hussein A. Kaoud
- Department of Veterinary Hygiene and Management, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
| |
Collapse
|
3
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Pereira AP, Antunes P, Peixe L, Freitas AR, Novais C. Current insights into the effects of cationic biocides exposure on Enterococcus spp. Front Microbiol 2024; 15:1392018. [PMID: 39006755 PMCID: PMC11242571 DOI: 10.3389/fmicb.2024.1392018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.
Collapse
Affiliation(s)
- Ana P Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Nong Y, Steinig E, Pollock GL, Taiaroa G, Carter GP, Monk IR, Pang S, Daley DA, Coombs GW, Forde BM, Harris PNA, Sherry NL, Howden BP, Pasricha S, Baines SL, Williamson DA. Emergence and clonal expansion of a qacA-harbouring sequence type 45 lineage of methicillin-resistant Staphylococcus aureus. Commun Biol 2024; 7:349. [PMID: 38514781 PMCID: PMC10957945 DOI: 10.1038/s42003-024-06012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.
Collapse
Affiliation(s)
- Yi Nong
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Eike Steinig
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georgina L Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - George Taiaroa
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Doherty Applied Microbial Genomics, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stanley Pang
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Denise A Daley
- Australian Group on Antimicrobial Resistance, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Brian M Forde
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
| | - Patrick N A Harris
- The University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Shivani Pasricha
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Zhang J, Li T, Tao S, Shen M. Microplastic pollution interaction with disinfectant resistance genes: research progress, environmental impacts, and potential threats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16241-16255. [PMID: 38340302 DOI: 10.1007/s11356-024-32225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The consumption of disposable plastic products and disinfectants has surged during the global COVID-19 pandemic, as they play a vital role in effectively preventing and controlling the spread of the virus. However, microplastic pollution and the excessive or improper use of disinfectants contribute to the increased environmental tolerance of microorganisms. Microplastics play a crucial role as vectors for microorganisms and plankton, facilitating energy transfer and horizontal gene exchange. The increase in the use of disinfectants has become a driving force for the growth of disinfectant resistant bacteria (DRB). A large number of microorganisms can have intense gene exchange, such as plasmid loss and capture, phage transduction, and cell fusion. The reproduction and diffusion rate of DRB in the environment is significantly higher than that of ordinary microorganisms, which will greatly increase the environmental tolerance of DRB. Unfortunately, there is still a huge knowledge gap in the interaction between microplastics and disinfectant resistance genes (DRGs). Accordingly, it is critical to comprehensively summarize the formation and transmission routes of DRGs on microplastics to address the problem. This paper systematically analyzed the process and mechanisms of DRGs formed by microbes. The interaction between microplastics and DRGs and the contribution of microplastic on the diffusion and spread of DRGs were expounded. The potential threats to the ecological environment and human health were also discussed. Additionally, some challenges and future priorities were also proposed with a view to providing useful basis for further research.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
7
|
Maillard JY, Pascoe M. Disinfectants and antiseptics: mechanisms of action and resistance. Nat Rev Microbiol 2024; 22:4-17. [PMID: 37648789 DOI: 10.1038/s41579-023-00958-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK.
| | - Michael Pascoe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| |
Collapse
|
8
|
Shen M, Zhao Y, Liu S, Tao S, Li T, Long H. Can microplastics and disinfectant resistance genes pose conceivable threats to water disinfection process? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167192. [PMID: 37730038 DOI: 10.1016/j.scitotenv.2023.167192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/13/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution in the environment has aroused widespread concerns, however, the potential environmental risks caused by excessive use of disinfectants are still unknown. Disinfectants with doses below the threshold can enhance the communication of resistance genes in pathogenic microorganisms, promoting the development and spread of antimicrobial activity. Problematically, the intensification of microplastic pollution and the increase of disinfectant consumption will become a key driving force for the growth of disinfectant resistance bacteria (DRB) and disinfectant resistance genes (DRGs) in the environment. Disinfection plays a crucial role in ensuring water safety, however, the presence of microplastics and DRGs seriously disturb the water disinfection process. Microplastics can reduce the concentration of disinfectant in the local environment around microorganisms and improve their tolerance. Microorganisms can improve their resistance to disinfectants or generate resistance genes via phenotypic adaptation, gene mutations, and horizontal gene transfer. However, very limited information is available on the impact of DRB and DRGs on disinfection process. In this paper, the contribution of microplastics to the migration and transmission of DRGs was analyzed. The challenges posed by the presence of microplastics and DRGs on conventional disinfection were thoroughly discussed. The knowledge gaps faced by relevant current research and further research priorities have been proposed in order to provide a scientific basis in the future.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Hongming Long
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
9
|
Wu-Chen RA, Feng J, Elhadidy M, Nambiar RB, Liao X, Yue M, Ding T. Benzalkonium chloride forces selective evolution of resistance towards antibiotics in Salmonella enterica serovar Typhimurium. J Infect Public Health 2023; 16 Suppl 1:225-235. [PMID: 37935604 DOI: 10.1016/j.jiph.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Although food-grade disinfectants are extensively used worldwide, it has been reported that the long-term exposure of bacteria to these compounds may represent a selective force inducing evolution including the emergence of antibiotic resistance. However, the mechanism underlying this correlation has not been elucidated. This study aims to investigate the genomic evolution caused by long-term disinfectant exposure in terms of antibiotic resistance in Salmonella enterica Typhimurium. METHODS S. Typhimurium isolates were exposed to increasing concentrations of benzalkonium chloride (BAC) and variations of their antibiotic susceptibilities were monitored. Strains that survived BAC exposure were analyzed at whole genome perspective using comparative genomics, and Sanger sequencing-confirmed mutations in ramR gene were identified. Next, the efflux activity in ramR-mutated strains shown as bisbenzimide accumulation and expression of genes involved in AcrAB-TolC efflux pump using quantitative reverse transcriptase PCR were determined. RESULTS Mutation rates of evolved strains varied from 5.82 × 10-9 to 5.56 × 10-8, with fold increase from 18.55 to 1.20 when compared with strains evolved without BAC. Mutations in ramR gene were found in evolved strains. Upregulated expression and increased activity of AcrAB-TolC was observed in evolved strains, which may contribute to their increased resistance to clinically relevant antibiotics. In addition, several indels and point mutations in ramR were identified, including L158P, A37V, G42E, F45L, and R46H which have not yet been linked to antimicrobial resistance. Resistance and mutations were stable after seven consecutive cultivations without BAC exposure. These results suggest that strains with sequence type (ST) ST34 were the most prone to mutations in ramR among the three STs tested (ST34, ST19, ST36). CONCLUSIONS This work demonstrated that disinfectants, specifically BAC forces S. Typhimurium to enter a specific evolutionary trajectory towards antibiotic resistance illustrating the side effects of long-term exposure to BAC and probably also to other disinfectants. Most significantly, this study provides new insights in understanding the emergence of antibiotic resistance in modern society.
Collapse
Affiliation(s)
- Ricardo A Wu-Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mohamed Elhadidy
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reshma B Nambiar
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
10
|
Destruel L, Lecomte M, Grand M, Leoz M, Pestel-Caron M, Dahyot S. Impact of clonal lineages on susceptibility of Staphylococcus lugdunensis to chlorhexidine digluconate and chloride benzalkonium. BMC Microbiol 2023; 23:337. [PMID: 37957548 PMCID: PMC10642039 DOI: 10.1186/s12866-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Little is known about susceptibility of Staphylococcus lugdunensis to antiseptics. The objective of this study was to evaluate, at the molecular and phenotypic level, the susceptibility of 49 clinical S. lugdunensis strains (belonging to the seven clonal complexes [CCs] defined by multilocus sequence typing) to two antiseptics frequently used in healthcare settings (chlorhexidine digluconate [CHX] and chloride benzalkonium [BAC]). RESULTS The minimum inhibitory concentrations (MICs), by broth microdilution method, varied for BAC from 0.25 mg/L to 8 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L) and for CHX from 0.5 mg/L to 2 mg/L (MIC50 = 1 mg/L, MIC90 = 2 mg/L). The BAC and CHX minimum bactericidal concentrations (MBCs) varied from 2 mg/L to 8 mg/L (MBC50 = 4 mg/L, MBC90 = 8 mg/L) and from 2 mg/L to 4 mg/L (MBC50 and MBC90 = 4 mg/L), respectively. A reduced susceptibility to CHX (MIC = 2 mg/L) was observed for 12.2% of the strains and that to BAC (MIC ≥ 4 mg/L) for 4.1%. The norA resistance gene was detected in all the 49 isolates, whereas the qacA gene was rarely encountered (two strains; 4.1%). The qacC, qacG, qacH, and qacJ genes were not detected. The two strains harboring the qacA gene had reduced susceptibility to both antiseptics and belonged to CC3. CONCLUSION The norA gene was detected in all the strains, suggesting that it could belong to the core genome of S. lugdunensis. S. lugdunensis is highly susceptible to both antiseptics tested. Reduced susceptibility to BAC and CHX was a rare phenomenon. Of note, a tendency to higher MICs of BAC was detected for CC3 isolates. These results should be confirmed on a larger collection of strains.
Collapse
Affiliation(s)
- Laurie Destruel
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Marine Lecomte
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Maxime Grand
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Marie Leoz
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, F - 76000, Rouen, France
| | - Martine Pestel-Caron
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Bacteriology, F - 76000, Rouen, France
| | - Sandrine Dahyot
- Univ Rouen Normandie, UNICAEN, Inserm, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Department of Bacteriology, F - 76000, Rouen, France.
| |
Collapse
|
11
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Dashtbani-Roozbehani A, Chitsaz M, Brown MH. The role of TMS 12 in the staphylococcal multidrug efflux protein QacA. J Antimicrob Chemother 2023:7143693. [PMID: 37100459 DOI: 10.1093/jac/dkad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To elucidate the importance of a region in QacA predicted to be important in antimicrobial substrate recognition. METHODS A total of 38 amino acid residues within or flanking putative transmembrane helix segment (TMS) 12 of QacA were individually replaced with cysteine using site-directed mutagenesis. The impact of these mutations on protein expression, drug resistance, transport activity and interaction with sulphhydryl-binding compounds was determined. RESULTS Accessibility analysis of cysteine-substituted mutants identified the extents of TMS 12, which allowed for refinement of the QacA topology model. Mutation of Gly-361, Gly-379 and Ser-387 in QacA resulted in reduced resistance to at least one bivalent substrate. Interaction with sulphhydryl-binding compounds in efflux and binding assays demonstrated the role of Gly-361 and Ser-387 in the binding and transport pathway of specific substrates. The highly conserved residue Gly-379 was found to be important for the transport of bivalent substrates, commensurate with the role of glycine residues in helical flexibility and interhelical interactions. CONCLUSIONS TMS 12 and its external flanking loop is required for the structural and functional integrity of QacA and contains amino acids directly involved in the interaction with substrates.
Collapse
Affiliation(s)
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
13
|
Sarwar S, Saleem S, Shahzad F, Jahan S. Identifying and elucidating the resistance of Staphylococcus aureus isolated from hospital environment to conventional disinfectants. Am J Infect Control 2023; 51:178-183. [PMID: 35644295 DOI: 10.1016/j.ajic.2022.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Staphylococcus aureus is a nosocomial pathogen, detection and elucidation of its resistance mechanisms to conventional disinfectants may aid in limiting its spread on environmental surfaces in health care settings. In the current study, disinfectant susceptibility of S. aureus strains isolated from the hospital environment as well as possible associations between the presence of disinfectant-resistance genes and reduced susceptibility to disinfectants was investigated. METHODS A total of 245 samples were collected from the hospital environmental surfaces. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of disinfectants against S. aureus isolates were determined using the micro-broth dilution method. The qac genes (qacA, qacE, and qacΔE1) were detected by PCR and confirmed by sanger sequencing. RESULTS A total of 47 S. aureus strains were isolated, with more than 85% of them showing methicillin resistance. The qacA, qacE, and qac∆E1 genes were found in 23.4%, 29.7%, and 4.2% isolates respectively. All the isolates with qac genes had higher MIC and MBC values to selected disinfectants. CONCLUSIONS Significant methicillin resistant S. aureus (MRSA) contamination in the hospital environment was detected. Furthermore, higher qac gene frequencies were found in MRSA isolates that also correlated with higher MIC/MBC values to different disinfectants. The study proposes that hospitals should develop policies to determine disinfectant MICs against the common environmental isolates to contain the spread of resistant strains.
Collapse
Affiliation(s)
- Samreen Sarwar
- Department of Microbiology, University of Health Sciences, Lahore, Punjab, Pakistan.
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - Faheem Shahzad
- Department of Immunology, University of Health Sciences, Lahore, Punjab, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Punjab, Pakistan
| |
Collapse
|
14
|
Schaffer SD, Hutchison CA, Rouchon CN, Mdluli NV, Weinstein AJ, McDaniel D, Frank KL. Diverse Enterococcus faecalis strains show heterogeneity in biofilm properties. Res Microbiol 2023; 174:103986. [PMID: 35995340 PMCID: PMC9825631 DOI: 10.1016/j.resmic.2022.103986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Biofilm formation is important for Enterococcus faecalis to cause healthcare-associated infections. It is unclear how E. faecalis biofilms vary in parameters such as development and composition. To test the hypothesis that differences in biofilms exist among E. faecalis strains, we evaluated in vitro biofilm formation and matrix characteristics of five genetically diverse E. faecalis lab-adapted strains and clinical isolates (OG1RF, V583, DS16, MMH594, and VA1128). Biofilm formation of all strains was repressed in TSB+10% FBS. However, DMEM+10% FBS enhanced biofilm formation of clinical isolate VA1128. Crystal violet staining and fluorescence microscopy of biofilms grown on Aclar membranes demonstrated differences between OG1RF and VA1128 in biofilm development over a 48-h time course. None of the biofilms were dispersed by single treatments of sodium (meta)periodate, DNase, or Proteinase K alone, but the biofilm biomass of both OG1RF and DS16 was partially removed by a sequential treatment of sodium (meta)periodate and DNase. Reversing the treatment order was not effective, suggesting that the extracellular DNA targeted by DNase was obscured by carbohydrates that are susceptible to sodium (meta)periodate degradation. Fluorescent staining of biofilm matrix components further demonstrated that more carbohydrates bound by wheat germ agglutinin comprise OG1RF biofilms compared to VA1128 biofilms. This study highlights the existence of heterogeneity in biofilm properties among diverse E. faecalis strains, which may have implications for the design of novel anti-biofilm treatment strategies.
Collapse
Affiliation(s)
- Scott D Schaffer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Carissa A Hutchison
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Candace N Rouchon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Nontokozo V Mdluli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Arielle J Weinstein
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Dennis McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
15
|
Maillard J. Impact of benzalkonium chloride, benzethonium chloride and chloroxylenol on bacterial antimicrobial resistance. J Appl Microbiol 2022; 133:3322-3346. [PMID: 35882500 PMCID: PMC9826383 DOI: 10.1111/jam.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/11/2023]
Abstract
This review examined 3655 articles on benzalkonium chloride (BKC), benzethonium chloride (BZT) and chloroxylenol (CHO) aiming to understand their impact on antimicrobial resistance. Following the application of inclusion/exclusion criteria, only 230 articles were retained for analysis; 212 concerned BKC, with only 18 for CHO and BZT. Seventy-eight percent of studies used MIC to measure BKC efficacy. Very few studies defined the term 'resistance' and 85% of studies defined 'resistance' as <10-fold increase (40% as low as 2-fold) in MIC. Only a few in vitro studies reported on formulated products and when they did, products performed better. In vitro studies looking at the impact of BKC exposure on bacterial resistance used either a stepwise training protocol or exposure to constant BKC concentrations. In these, BKC exposure resulted in elevated MIC or/and MBC, often associated with efflux, and at time, a change in antibiotic susceptibility profile. The clinical relevance of these findings was, however, neither reported nor addressed. Of note, several studies reported that bacterial strains with an elevated MIC or MBC remained susceptible to the in-use BKC concentration. BKC exposure was shown to reduce bacterial diversity in complex microbial microcosms, although the clinical significance of such a change has not been established. The impact of BKC exposure on the dissemination of resistant genes (notably efflux) remains speculative, although it manifests that clinical, veterinary and food isolates with elevated BKC MIC carried multiple efflux pump genes. The correlation between BKC usage and gene carriage, maintenance and dissemination has also not been established. The lack of clinical interpretation and significance in these studies does not allow to establish with certainty the role of BKC on AMR in practice. The limited literature and BZT and CHO do not allow to conclude that these will impact negatively on emerging bacterial resistance in practice.
Collapse
Affiliation(s)
- Jean‐Yves Maillard
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
| |
Collapse
|
16
|
Zhang S, Sun H, Lao G, Zhou Z, Liu Z, Cai J, Sun Q. Identification of Mobile Colistin Resistance Gene mcr-10 in Disinfectant and Antibiotic Resistant Escherichia coli from Disinfected Tableware. Antibiotics (Basel) 2022; 11:883. [PMID: 35884137 PMCID: PMC9311939 DOI: 10.3390/antibiotics11070883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread escalation of bacterial resistance threatens the safety of the food chain. To investigate the resistance characteristics of E. coli strains isolated from disinfected tableware against both disinfectants and antibiotics, 311 disinfected tableware samples, including 54 chopsticks, 32 dinner plates, 61 bowls, 11 cups, and three spoons were collected in Chengdu, Sichuan Province, China to screen for disinfectant- (benzalkonium chloride and cetylpyridinium chloride) and tigecycline-resistant isolates, which were then subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). The coliform-positive detection rate was 51.8% (161/311) and among 161 coliform-positive samples, eight E. coli strains were multidrug-resistant to benzalkonium chloride, cetylpyridinium chloride, ampicillin, and tigecycline. Notably, a recently described mobile colistin resistance gene mcr-10 present on the novel IncFIB-type plasmid of E. coli EC2641 screened was able to successfully transform the resistance. Global phylogenetic analysis revealed E. coli EC2641 clustered together with two clinically disinfectant- and colistin-multidrug-resistant E. coli strains from the US. This is the first report of mcr-10-bearing E. coli detected in disinfected tableware, suggesting that continuous monitoring of resistance genes in the catering industry is essential to understand and respond to the transmission of antibiotic resistance genes from the environment and food to humans and clinics.
Collapse
Affiliation(s)
- Senlin Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China;
| | - Honghu Sun
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu Institute of Food Inspection, Chengdu 611135, China; (H.S.); (J.C.)
| | - Guangjie Lao
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Zhiwei Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Zhuochong Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| | - Jiong Cai
- Irradiation Preservation Key Laboratory of Sichuan Province, Chengdu Institute of Food Inspection, Chengdu 611135, China; (H.S.); (J.C.)
| | - Qun Sun
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610064, China;
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (G.L.); (Z.Z.); (Z.L.)
| |
Collapse
|
17
|
van de Lagemaat M, Stockbroekx V, Geertsema-Doornbusch GI, Dijk M, Carniello V, Woudstra W, van der Mei HC, Busscher HJ, Ren Y. A Comparison of the Adaptive Response of Staphylococcus aureus vs. Streptococcus mutans and the Development of Chlorhexidine Resistance. Front Microbiol 2022; 13:861890. [PMID: 35694293 PMCID: PMC9186159 DOI: 10.3389/fmicb.2022.861890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials with nonselective antibacterial efficacy such as chlorhexidine can be effective in reducing biofilm, but bear the risk of inducing resistance in specific bacteria. In clinical practice, bacteria such as Staphylococcus aureus have been found resistant to chlorhexidine, but other bacteria, including Streptococcus mutans, have largely remained susceptible to chlorhexidine despite its widespread use in oral healthcare. Here, we aim to forward a possible reason as to why S. aureus can acquire resistance against chlorhexidine, while S. mutans remains susceptible to chlorhexidine. Measurement of surface-enhanced fluorescence indicated that chlorhexidine caused gradual, but irreversible deformation to adhering green fluorescent S. aureus due to irreparable damage to the cell wall. Concurrently, the metabolic activity of adhering staphylococci was higher than of planktonic bacteria, suggesting efflux mechanisms may have been activated upon cell wall deformation, impeding the buildup of a high chlorhexidine concentration in the cytoplasm and therewith stimulating the development of chlorhexidine resistance in S. aureus. Exposure of S. mutans to chlorhexidine caused immediate, but reversible deformation in adhering streptococci, indicative of rapid self-repair of cell wall damage done by chlorhexidine. Due to cell wall self-repair, S. mutans will be unable to effectively reduce the chlorhexidine concentration in the cytoplasm causing solidification of the cytoplasm. In line, no increased metabolic activity was observed in S. mutans during exposure to chlorhexidine. Therewith, self-repair is suicidal and prevents the development of a chlorhexidine-resistant progeny in S. mutans.
Collapse
Affiliation(s)
- Marieke van de Lagemaat
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Valerie Stockbroekx
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Gésinda I. Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Melissa Dijk
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| | - Vera Carniello
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Willem Woudstra
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- *Correspondence: Henny C. van der Mei,
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, Netherlands
| |
Collapse
|
18
|
AgNPs Targeting the Drug Resistance Problem of Staphylococcus aureus: Susceptibility to Antibiotics and Efflux Effect. Pharmaceutics 2022; 14:pharmaceutics14040763. [PMID: 35456596 PMCID: PMC9025349 DOI: 10.3390/pharmaceutics14040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The present work presents translational research with application of AgNPs targeting the global drug resistance problem. In vivo fieldwork was carried out with 400 breeding farm cows sick with a serous mastitis. Ex vivo results revealed that after cow treatment with LactobayTM (a mixture of antibiotic drugs) the susceptibility to 31 antibiotics of S. aureus isolates from cow breast secretion decreased by 25%, while after treatment with Argovit–CTM silver nanoparticles S. aureus susceptibility increased by 11%. The portion of isolates with an efflux effect leading to elimination of antibiotics from S. aureus after Lactobay-treatment resulted in a 15% increase, while Argovit-C-treatment led to a 17.5% decrease. The obtained results showed that mastitis treatments with Argovit-CTM AgNPs can partially restore the activity of antibiotics towards S. aureus and shorten the duration of mastitis treatment by 33%.
Collapse
|
19
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
20
|
Nordholt N, Kanaris O, Schmidt SBI, Schreiber F. Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nat Commun 2021; 12:6792. [PMID: 34815390 PMCID: PMC8611074 DOI: 10.1038/s41467-021-27019-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Biocides used as disinfectants are important to prevent the transmission of pathogens, especially during the current antibiotic resistance crisis. This crisis is exacerbated by phenotypically tolerant persister subpopulations that can survive transient antibiotic treatment and facilitate resistance evolution. Here, we show that E. coli displays persistence against a widely used disinfectant, benzalkonium chloride (BAC). Periodic, persister-mediated failure of disinfection rapidly selects for BAC tolerance, which is associated with reduced cell surface charge and mutations in the lpxM locus, encoding an enzyme for lipid A biosynthesis. Moreover, the fitness cost incurred by BAC tolerance turns into a fitness benefit in the presence of antibiotics, suggesting a selective advantage of BAC-tolerant mutants in antibiotic environments. Our findings highlight the links between persistence to disinfectants and resistance evolution to antimicrobials.
Collapse
Affiliation(s)
- Niclas Nordholt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| | - Orestis Kanaris
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Selina B I Schmidt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.
| |
Collapse
|
21
|
Golonka I, Greber KE, Oleksy-Wawrzyniak M, Paleczny J, Dryś A, Junka A, Sawicki W, Musiał W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int J Mol Sci 2021; 22:ijms22147466. [PMID: 34299085 PMCID: PMC8306634 DOI: 10.3390/ijms22147466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1–P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1–P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4–P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
- Correspondence: ; Tel.: +48-717-840-231
| |
Collapse
|
22
|
Prevalence of biocide resistance genes and chlorhexidine and mupirocin non-susceptibility in Portuguese hospitals during a 31-year period (1985-2016). J Glob Antimicrob Resist 2020; 24:169-174. [PMID: 33373736 DOI: 10.1016/j.jgar.2020.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Methicillin-resistantStaphylococcus aureus (MRSA) remains a major human pathogen. MRSA decolonisation strategies frequently combine chlorhexidine baths and mupirocin nasal ointment. Although MRSA remains widespread in Portuguese hospitals, information regarding resistance to biocides and mupirocin is scarce. We evaluated the prevalence of biocide resistance genes and chlorhexidine and mupirocin non-susceptibility in a representative and well-characterised collection of MRSA isolated in Portuguese hospitals during a 31-year period (1985-2016). METHODS Prevalence of five biocide resistance genes (lmrS, mepA, sepA, qacAB and smr) was determined by PCR. Antibiotic susceptibility was assessed by disk diffusion and by MIC determination using broth microdilution (chlorhexidine) and Etest (mupirocin). RESULTS Chromosomal genessepA and mepA were detected in all isolates, while lmrS was found in 87.1%. The prevalence of plasmid-borne genes was significant for qacAB (22.4%), associated with the Iberian (ST247-I/IA) clone (P < 0.0001), and low for smr (1.0%) detected among isolates belonging to the ST239-III/IIIvariant clone. Chlorhexidine non-susceptibility (MIC ≥ 4 mg/L) was observed in two isolates belonging to the EMRSA-15 clone (ST22-IV). Non-susceptibility to mupirocin (MIC > 1 mg/L) was significant (15.4%; n = 31) and mainly found among isolates of the EMRSA-15 clone (P < 0.0001; n = 29). One isolate presented low-level mupirocin resistance (MIC = 32 mg/L), and two missense mutations N213D (A637G) and V588F (G1762T) were identified in the ileS gene. CONCLUSION Concerningly, we detected a high prevalence of biocide resistance genes and an association of mupirocin and chlorhexidine non-susceptibility with the dominant EMRSA-15 clone in Portuguese hospitals.
Collapse
|
23
|
Cetylpyridinium Chloride: Mechanism of Action, Antimicrobial Efficacy in Biofilms, and Potential Risks of Resistance. Antimicrob Agents Chemother 2020; 64:AAC.00576-20. [PMID: 32513792 DOI: 10.1128/aac.00576-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is a serious issue for public health care all over the world. While resistance toward antibiotics has attracted strong interest among researchers and the general public over the last 2 decades, the directly related problem of resistance toward antiseptics and biocides has been somewhat left untended. In the field of dentistry, antiseptics are routinely used in professional care, but they are also included in lots of oral care products such as mouthwashes or dentifrices, which are easily available for consumers over-the-counter. Despite this fact, there is little awareness among the dental community about potential risks of the widespread, unreflected, and potentially even needless use of antiseptics in oral care. Cetylpyridinium chloride (CPC), a quaternary ammonium compound, which was first described in 1939, is one of the most commonly used antiseptics in oral care products and included in a wide range of over-the-counter products such as mouthwashes and dentifrices. The aim of the present review is to summarize the current literature on CPC, particularly focusing on its mechanism of action, its antimicrobial efficacy toward biofilms, and on potential risks of resistance toward this antiseptic as well as underlying mechanisms. Furthermore, this work aims to raise awareness among the dental community about the risk of resistance toward antiseptics in general.
Collapse
|
24
|
Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv 2020; 27:632-641. [PMID: 32329376 PMCID: PMC7241502 DOI: 10.1080/10717544.2020.1756985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
When antibiotic-resistant pathogenic bacteria pose a high threat to human health, bacterial multidrug efflux pumps become major contributors to the high-level antibiotic resistance in most microorganisms. Since traditional antibiotics are still indispensable currently, we report a dual drug delivery system to maximize the antibacterial efficacy of antibiotics by inhibiting efflux pumps in bacteria before their exposure to antibiotics. In this research, a microsphere/hydrogel composite was constructed from ciprofloxacin (Cip)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres and ginsenoside Rh2 (G-Rh2) dispersed thermo-sensitive hydrogel to treat skin infections. In vitro drug release studies indicated that while G-Rh2 in hydrogel presented a faster and short-term release manner to rapidly inhibit the NorA efflux pumps, Cip showed a sustained and long-term release behavior to provide a local high concentration gradient for facilitating drug percutaneous penetration. The combination of Cip and G-Rh2 demonstrated a high degree of synergism against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), hence significantly improving their in vitro antibacterial activity and efficiency. Moreover, the antibacterial performance of the microsphere/hydrogel composite with a sequential release profile is superior to that of other formulations in mouse model of MRSA skin infections, indicating its great potential to treat antibiotic-resistant skin infections.
Collapse
Affiliation(s)
- Minghao Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chune Zhu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieyu Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|