1
|
Manes NP, Song J, Nita-lazar A. EnsMOD: A Software Program for Omics Sample Outlier Detection. J Comput Biol 2023; 30:726-735. [PMID: 37042708 PMCID: PMC10282819 DOI: 10.1089/cmb.2022.0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Detection of omics sample outliers is important for preventing erroneous biological conclusions, developing robust experimental protocols, and discovering rare biological states. Two recent publications describe robust algorithms for detecting transcriptomic sample outliers, but neither algorithm had been incorporated into a software tool for scientists. Here we describe Ensemble Methods for Outlier Detection (EnsMOD) which incorporates both algorithms. EnsMOD calculates how closely the quantitation variation follows a normal distribution, plots the density curves of each sample to visualize anomalies, performs hierarchical cluster analyses to calculate how closely the samples cluster with each other, and performs robust principal component analyses to statistically test if any sample is an outlier. The probabilistic threshold parameters can be easily adjusted to tighten or loosen the outlier detection stringency. EnsMOD can be used to analyze any omics dataset with normally distributed variance. Here it was used to analyze a simulated proteomics dataset, a multiomic (proteome and transcriptome) dataset, a single-cell proteomics dataset, and a phosphoproteomics dataset. EnsMOD successfully identified all of the simulated outliers, and subsequent removal of a detected outlier improved data quality for downstream statistical analyses.
Collapse
Affiliation(s)
- Nathan P. Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Song
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Vakadaris G, Stefanis C, Giorgi E, Brouvalis M, Voidarou C(C, Kourkoutas Y, Tsigalou C, Bezirtzoglou E. The Role of Probiotics in Inducing and Maintaining Remission in Crohn's Disease and Ulcerative Colitis: A Systematic Review of the Literature. Biomedicines 2023; 11:biomedicines11020494. [PMID: 36831029 PMCID: PMC9952932 DOI: 10.3390/biomedicines11020494] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract affecting millions of patients worldwide. The gut microbiome partly determines the pathogenesis of both diseases. Even though probiotics have been widely used as a potential treatment, their efficacy in inducing and maintaining remission is still controversial. Our study aims to review the present-day literature about the possible role of probiotics in treating inflammatory bowel diseases in adults. This research was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. We included studies concerning adult patients who compared probiotics with placebo or non-probiotic intervention. We identified thirty-three studies, including 2713 patients from fourteen countries. The role of probiotics in Crohn's disease was examined in eleven studies. Only four studies presented statistically significant results in the remission of disease, primarily when used for three to six months. On the other hand, in twenty-one out of twenty-five studies, probiotics proved effective in achieving or maintaining remission in ulcerative colitis. Supplementation with Bifidobacterium sp. or a combination of probiotics is the most effective intervention, especially when compared with a placebo. There is strong evidence supporting the usage of probiotic supplementation in patients with ulcerative colitis, yet more research is needed to justify their efficacy in Crohn's disease.
Collapse
Affiliation(s)
- Georgios Vakadaris
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Christos Stefanis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Elpida Giorgi
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Merkourios Brouvalis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Chrysoula (Chrysa) Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 60100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
3
|
Chavan AR, Singh AK, Gupta RK, Nakhate SP, Poddar BJ, Gujar VV, Purohit HJ, Khardenavis AA. Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnol Genet Eng Rev 2023:1-46. [PMID: 36714949 DOI: 10.1080/02648725.2022.2152627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023]
Abstract
Prebiotics as a part of dietary nutrition can play a crucial role in structuring the composition and metabolic function of intestinal microbiota and can thus help in managing a clinical scenario by preventing diseases and/or improving health. Among the different prebiotics, non-digestible carbohydrates are molecules that selectively enrich a typical class of bacteria with probiotic potential. This review summarizes the current knowledge about the different aspects of prebiotics, such as its production, characterization and purification by various techniques, and its link to novel product development at an industrial scale for wide-scale use in diverse range of health management applications. Furthermore, the path to effective valorization of agricultural residues in prebiotic production has been elucidated. This review also discusses the recent developments in application of genomic tools in the area of prebiotics for providing new insights into the taxonomic characterization of gut microorganisms, and exploring their functional metabolic pathways for enzyme synthesis. However, the information regarding the cumulative effect of prebiotics with beneficial bacteria, their colonization and its direct influence through altered metabolic profile is still getting established. The future of this area lies in the designing of clinical condition specific functional foods taking into consideration the host genotypes, thus facilitating the creation of balanced and required metabolome and enabling to maintain the healthy status of the host.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhav Vilasrao Gujar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- JoVE, Mumbai, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Qi R, Wang J, Sun J, Qiu X, Liu X, Wang Q, Yang F, Ge L, Liu Z. The effects of gut microbiota colonizing on the porcine hypothalamus revealed by whole transcriptome analysis. Front Microbiol 2022; 13:970470. [PMID: 36312924 PMCID: PMC9606227 DOI: 10.3389/fmicb.2022.970470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The roles of the microbe-gut-brain axis in metabolic homeostasis, development, and health are well-known. The hypothalamus integrates the higher nerve center system and functions to regulate energy balance, feeding, biological rhythms and mood. However, how the hypothalamus is affected by gut microbes in mammals is unclear. This study demonstrated differences in hypothalamic gene expression between the germ-free (GF) pigs and pigs colonized with gut microbiota (CG) by whole-transcriptome analysis. A total of 938 mRNAs, 385 lncRNAs and 42 miRNAs were identified to be differentially expressed between the two groups of pigs. An mRNA-miRNA-lncRNA competing endogenous RNA network was constructed, and miR-22-3p, miR-24-3p, miR-136-3p, miR-143-3p, and miR-545-3p located in the net hub. Gene function and pathway enrichment analysis showed the altered mRNAs were mainly related to developmental regulation, mitochondrial function, the nervous system, cell signaling and neurodegenerative diseases. Notably, the remarkable upregulation of multiple genes in oxidative phosphorylation enhanced the GF pigs’ hypothalamic energy expenditure. Additionally, the reduction in ATP content and the increase in carnitine palmitoyl transterase-1 (CPT1) protein level also confirmed this fact. Furthermore, the hypothalamic cell apoptosis rate in the CG piglets was significantly higher than that in the GF piglets. This may be due to the elevated concentrations of pro-inflammatory factors produced by gut bacteria. The obtained results collectively suggest that the colonization of gut microbes has a significant impact on hypothalamic function and health.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- *Correspondence: Renli Qi,
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing, China
| | - Xin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- Zuohua Liu,
| |
Collapse
|
5
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
6
|
Ambite I, Filenko NA, Zaldastanishvili E, Butler DS, Tran TH, Chaudhuri A, Esmaeili P, Ahmadi S, Paul S, Wullt B, Putze J, Chen SL, Dobrindt U, Svanborg C. Active bacterial modification of the host environment through RNA polymerase II inhibition. J Clin Invest 2021; 131:140333. [PMID: 33320835 DOI: 10.1172/jci140333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
Unlike pathogens, which attack the host, commensal bacteria create a state of friendly coexistence. Here, we identified a mechanism of bacterial adaptation to the host niche, where they reside. Asymptomatic carrier strains were shown to inhibit RNA polymerase II (Pol II) in host cells by targeting Ser2 phosphorylation, a step required for productive mRNA elongation. Assisted by a rare, spontaneous loss-of-function mutant from a human carrier, the bacterial NlpD protein was identified as a Pol II inhibitor. After internalization by host cells, NlpD was shown to target constituents of the Pol II phosphorylation complex (RPB1 and PAF1C), attenuating host gene expression. Therapeutic efficacy of a recombinant NlpD protein was demonstrated in a urinary tract infection model, by reduced tissue pathology, accelerated bacterial clearance, and attenuated Pol II-dependent gene expression. The findings suggest an intriguing, evolutionarily conserved mechanism for bacterial modulation of host gene expression, with a remarkable therapeutic potential.
Collapse
Affiliation(s)
- Inès Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nina A Filenko
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Daniel Sc Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arunima Chaudhuri
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Parisa Esmaeili
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sanchari Paul
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Infectious Diseases Group, Genome Institute Singapore, A*STAR, Singapore
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
McFall-Ngai M, Bosch TCG. Animal development in the microbial world: The power of experimental model systems. Curr Top Dev Biol 2020; 141:371-397. [PMID: 33602493 PMCID: PMC8211120 DOI: 10.1016/bs.ctdb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of powerful model systems has been a critical strategy for understanding the mechanisms underlying the progression of an animal through its ontogeny. Here we provide two examples that allow deep and mechanistic insight into the development of specific animal systems. Species of the cnidarian genus Hydra have provided excellent models for studying host-microbe interactions and how metaorganisms function in vivo. Studies of the Hawaiian bobtail squid Euprymna scolopes and its luminous bacterial partner Vibrio fischeri have been used for over 30 years to understand the impact of a broad array of levels, from ecology to genomics, on the development and persistence of symbiosis. These examples provide an integrated perspective of how developmental processes work and evolve within the context of a microbial world, a new view that opens vast horizons for developmental biology research. The Hydra and the squid systems also lend an example of how profound insights can be discovered by taking advantage of the "experiments" that evolution had done in shaping conserved developmental processes.
Collapse
Affiliation(s)
- Margaret McFall-Ngai
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI, United States.
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
8
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
9
|
Akimbekov NS, Digel I, Sherelkhan DK, Lutfor AB, Razzaque MS. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem Cytochem 2020; 53:33-42. [PMID: 32624628 PMCID: PMC7322162 DOI: 10.1267/ahc.20011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence for the effects of vitamin D on intestinal host-microbiome interactions related to gut dysbiosis and bowel inflammation. This brief review highlights the potential links between vitamin D and gut health, emphasizing the role of vitamin D in microbiological and immunological mechanisms of inflammatory bowel diseases. A comprehensive literature search was carried out in PubMed and Google Scholar using combinations of keywords "vitamin D," "intestines," "gut microflora," "bowel inflammation". Only articles published in English and related to the study topic are included in the review. We discuss how vitamin D (a) modulates intestinal microbiome function, (b) controls antimicrobial peptide expression, and (c) has a protective effect on epithelial barriers in the gut mucosa. Vitamin D and its nuclear receptor (VDR) regulate intestinal barrier integrity, and control innate and adaptive immunity in the gut. Metabolites from the gut microbiota may also regulate expression of VDR, while vitamin D may influence the gut microbiota and exert anti-inflammatory and immune-modulating effects. The underlying mechanism of vitamin D in the pathogenesis of bowel diseases is not fully understood, but maintaining an optimal vitamin D status appears to be beneficial for gut health. Future studies will shed light on the molecular mechanisms through which vitamin D and VDR interactions affect intestinal mucosal immunity, pathogen invasion, symbiont colonization, and antimicrobial peptide expression.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ilya Digel
- Institute for Bioengineering FH Aachen University of Applied Sciences, Jülich, Germany
| | - Dinara K. Sherelkhan
- Department of Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
10
|
Jabs S, Biton A, Bécavin C, Nahori MA, Ghozlane A, Pagliuso A, Spanò G, Guérineau V, Touboul D, Giai Gianetto Q, Chaze T, Matondo M, Dillies MA, Cossart P. Impact of the gut microbiota on the m 6A epitranscriptome of mouse cecum and liver. Nat Commun 2020; 11:1344. [PMID: 32165618 PMCID: PMC7067863 DOI: 10.1038/s41467-020-15126-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. Here we examine whether host epitranscriptomic marks are affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice carrying conventional, modified, or no microbiota. We find that variations in the gut microbiota correlate with m6A modifications in the cecum, and to a lesser extent in the liver, affecting pathways related to metabolism, inflammation and antimicrobial responses. We analyze expression levels of several known writer and eraser enzymes, and find that the methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A modifications in mono-associated mice. Our results highlight epitranscriptomic modifications as an additional level of interaction between commensal bacteria and their host.
Collapse
Affiliation(s)
- Sabrina Jabs
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| | - Anne Biton
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Christophe Bécavin
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Anne Nahori
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Alessandro Pagliuso
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Giulia Spanò
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Quentin Giai Gianetto
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Thibault Chaze
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Mariette Matondo
- Unité de spectrométrie de masse et Protéomique, CNRS USR 2000, Institut Pasteur, 28 rue du Dr Roux, F-75015, Paris, France
| | - Marie-Agnès Dillies
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 rue du Dr Roux, F-75015, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, U604 Institut National de la Santé et de la Recherche Médicale, USC 2020 Institut National de la Recherche Agronomique, 25 rue du Dr Roux, F-75015, Paris, France.
| |
Collapse
|
11
|
Siebert JC, Neff CP, Schneider JM, Regner EH, Ohri N, Kuhn KA, Palmer BE, Lozupone CA, Görg C. VOLARE: visual analysis of disease-associated microbiome-immune system interplay. BMC Bioinformatics 2019; 20:432. [PMID: 31429723 PMCID: PMC6701114 DOI: 10.1186/s12859-019-3021-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
Background Relationships between specific microbes and proper immune system development, composition, and function have been reported in a number of studies. However, researchers have discovered only a fraction of the likely relationships. “Omic” methodologies such as 16S ribosomal RNA (rRNA) sequencing and time-of-flight mass cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions between microbial and host immune features provide one approach for quantifying relationships between “omes”, and the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results. However, the top table alone lacks the detail that domain experts such as microbiologists and immunologists need to vet candidate results for follow-up experiments. Results To support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case studies—microbiome:cytokine data from fecal samples in human immunodeficiency virus (HIV), microbiome:cytokine data in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data from system logs to characterize usage scenarios. This log analysis revealed that users frequently generated detailed regression plots, suggesting that this detail aids the vetting of results. Conclusions Systematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive environment transcends the limitations of a static top table. Electronic supplementary material The online version of this article (10.1186/s12859-019-3021-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janet C Siebert
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,CytoAnalytics, Denver, CO, 80113, USA.
| | - Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer M Schneider
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Emilie H Regner
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Neha Ohri
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristine A Kuhn
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | |
Collapse
|
12
|
Khan MM, Ernst O, Manes NP, Oyler BL, Fraser IDC, Goodlett DR, Nita-Lazar A. Multi-Omics Strategies Uncover Host-Pathogen Interactions. ACS Infect Dis 2019; 5:493-505. [PMID: 30857388 DOI: 10.1021/acsinfecdis.9b00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the success of the Human Genome Project, large-scale systemic projects became a reality that enabled rapid development of the systems biology field. Systems biology approaches to host-pathogen interactions have been instrumental in the discovery of some specifics of Gram-negative bacterial recognition, host signal transduction, and immune tolerance. However, further research, particularly using multi-omics approaches, is essential to untangle the genetic, immunologic, (post)transcriptional, (post)translational, and metabolic mechanisms underlying progression from infection to clearance of microbes. The key to understanding host-pathogen interactions lies in acquiring, analyzing, and modeling multimodal data obtained through integrative multi-omics experiments. In this article, we will discuss how multi-omics analyses are adding to our understanding of the molecular basis of host-pathogen interactions and systemic maladaptive immune response of the host to microbes and microbial products.
Collapse
Affiliation(s)
- Mohd M. Khan
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Orna Ernst
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - Nathan P. Manes
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - Benjamin L. Oyler
- University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Iain D. C. Fraser
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| | - David R. Goodlett
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Baltimore, Maryland 21201, United States
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, Maryland 20814, United States
| |
Collapse
|
13
|
|
14
|
|