1
|
Yu C, Yu M, Ma R, Wei S, Jin M, Jiao N, Zheng Q, Zhang R, Feng X. A novel Alteromonas phage with tail fiber containing six potential iron-binding domains. Microbiol Spectr 2025; 13:e0093424. [PMID: 39565130 PMCID: PMC11705849 DOI: 10.1128/spectrum.00934-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Viruses play a vital role in regulating microbial communities, contributing to biogeochemical cycles of carbon, nitrogen, and essential metals. Alteromonas is widespread and plays an essential role in marine microbial ecology. However, there is limited knowledge about the interactions of Alteromonas and its viruses (alterophages). This study isolated a novel podovirus, vB_AmeP-R22Y (R22Y), which infects Alteromonas marina SW-47 (T). Phylogenetic analysis suggested that R22Y represented a novel viral genus within the Schitoviridae family. R22Y exhibited a broad host range and a relatively large burst size, exerting an important impact on the adaptability and dynamics of host populations. Two auxiliary metabolic genes, encoding Acyl carrier protein and AAA domain-containing protein, were predicted in R22Y, which may potentially assist in host fatty acid metabolism and VB12 biosynthesis, respectively. Remarkably, the prediction of the R22Y tail fiber structure revealed six conserved histidine residues (HxH motifs) that could potentially bind iron ions, suggesting that alterophages may function as organic iron-binding ligands in the marine environment. Our isolation and characterization of R22Y complements the Trojan Horse hypothesis, proposes the possible role of alterophages for marine iron biogeochemical cycling, and provides new insights into phage-host interactions in the iron-limited ocean.IMPORTANCEIron (Fe), as an essential micronutrient, is often a limiting factor for microbial growth in marine ecosystems. The Trojan Horse hypothesis suggests that iron in the phage tail fibers is recognized by the host's siderophore-bound iron receptor, enabling the phage to attach and initiate infection. The potential role of phages as iron-binding ligands has significant implications for oceanic trace metal biogeochemistry. In this study, we isolated a new phage R22Y with the potential to bind iron ions, using Alteromonas, a major siderophore producer, as the host. The tail fiber structure of R22Y exhibits six conserved HxH motifs, suggesting that each phage could potentially bind up to 36 iron ions. R22Y may contribute to colloidal organically complexed dissolved iron in the marine environment. This finding provides further insights into the Trojan Horse hypothesis, suggesting that alterophages may act as natural iron-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meishun Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shuzhen Wei
- School of Ocean and Earth Science, Tongji University, Shanghai, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
3
|
Ding G, Liu H, Lan J, Qian T, Zhou Y, Zhu T, Zhang T. Identification of receptor-binding protein and host receptor of non-lytic dsRNA phage phiNY. Microbiol Spectr 2024; 12:e0146724. [PMID: 39436121 PMCID: PMC11619300 DOI: 10.1128/spectrum.01467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
To date, complete genome sequences of 14 double-stranded RNA (dsRNA) phages are available, and studies have shown that the host range of dsRNA phages is limited. The hosts of most dsRNA phages belong to the genus Pseudomonas. However, the dsRNA phage phiNY, which has a non-lytic life cycle, was isolated from Microvirgula aerodenitrificans. Currently, the interaction between dsRNA phage phiNY and its host bacteria is unclear, which is not beneficial to a comprehensive understanding of dsRNA phage biology and the exploitation of dsRNA phage with non-lytic life cycle for biomedical applications and others. Phage adsorption is a crucial step through the interactions between receptor-binding protein (RBP) of the phage and its receptors to initiate the infection process, which dictates host range specificity. Thus, we identified the RBP and host receptor of phiNY. Through homology alignment, amino acid sequence similarity analysis, and the phylogenetic tree analysis, orf11, located in the M-segment of dsRNA phage phiNY, encodes a putative RBP. We further performed the whole-cell enzyme-linked immunosorbent assay (ELISA), western blotting assay, and indirect immunofluorescence assay and demonstrated that this orf11 is an RBP. Finally, using affinity chromatography, ELISA, and dynamic light scattering, we identified lipopolysaccharides (LPSs) on the surface of the host M. aerodenitrificans strain LH9 as host receptors involved in the adsorption of the dsRNA bacteriophage phiNY and observed the state of phiNY RBP after combining with LPS by atomic force microscopy. These results will guide future studies on phage-host interaction in a dsRNA phage with a non-lytic life cycle.IMPORTANCEThe interactions between the lytic dsRNA phages and their host receptors have been clarified in previous studies. However, the interaction between the dsRNA phage phiNY (which has a non-lytic life cycle) and its host receptors during the dsRNA phage adsorption process was unknown. Here, we found that phiNY uses the orf11 protein as a receptor-binding protein (RBP). In addition, we found that this orf11 recognizes lipopolysaccharide from the host bacterium Microvirgula aerodenitrificans strain LH9 as a specific receptor. These results suggest that phiNY, like lytic dsRNA phages, uses an RBP to bind to a similar host receptor (i.e., lipopolysaccharide). Determining the interaction between the dsRNA phage phiNY and its host receptors will help to elucidate the mechanisms underlying the phiNY non-lytic life cycle and enhance our understanding of its infection mechanism.
Collapse
Affiliation(s)
- Guoqing Ding
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Hongmei Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Tianbao Qian
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Yan Zhou
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Tongyu Zhu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine biotechnology of Institution of higher education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Zhen J, Liu R, Man C, Xu S, Zhang W, Zou L, Liu W, Ni HB, Zou M, He T, Wang R, Zhang XX, Zhang C. Bacteriophage LHE83 targeting OmpA as a receptor exhibited synergism with spectinomycin against Escherichia coli. Poult Sci 2024; 103:103643. [PMID: 38537406 PMCID: PMC10987938 DOI: 10.1016/j.psj.2024.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the characteristics of bacteriophages is crucial for the optimization of phage therapy. In this study, the biological and genomic characteristics of coliphage LHE83 were determined and its synergistic effects with different types of antibiotics against E. coli E82 were investigated. Phage LHE83 displayed a contractile tail morphology and had a titer of 3.02 × 109 pfu/mL at an optimal MOI of 0.01. Meanwhile, phage LHE83 exhibited good physical and chemical factors tolerance. The 1-step growth analysis revealed a latent period of approx. 10 min with a burst size of 87 pfu/infected cell. Phage LHE83 belongs to the genus Dhakavirus. Its genome consists of 170,464 bp with a 40% GC content, and a total of 268 Open Reading Frames (ORF) were predicted with no detected virulent or resistant genes. ORF 213 was predicted to encode the receptor binding protein (RBP) and confirmed by the antibody-blocking assay. Furthermore, a phage-resistant strain E. coli E82R was generated by co-culturing phage LHE83 with E. coli E82. Genomic analysis revealed that OmpA served as the receptor for phage LHE83, which was further confirmed by phage adsorption assay using E. coli BL21ΔOmpA, E. coli BL21ΔOmpA: OmpA and E. coli BL21:OmpA strains. Additionally, a synergistic effect was observed between phage LHE83 and spectinomycin against the drug-resistant strain E. coli E82. These results provide a theoretical basis for understanding the interactions between phages, antibiotics, and host bacteria, which can assist in the clinical application of phages and antibiotics against drug-resistant bacteria.
Collapse
Affiliation(s)
- Jianyu Zhen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cheng Man
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shijie Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxiu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tao He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Gonzalez-Serrano R, Rosselli R, Roda-Garcia JJ, Martin-Cuadrado AB, Rodriguez-Valera F, Dunne M. Distantly related Alteromonas bacteriophages share tail fibers exhibiting properties of transient chaperone caps. Nat Commun 2023; 14:6517. [PMID: 37845226 PMCID: PMC10579305 DOI: 10.1038/s41467-023-42114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
The host recognition modules encoding the injection machinery and receptor binding proteins (RBPs) of bacteriophages are predisposed to mutation and recombination to maintain infectivity towards co-evolving bacterial hosts. In this study, we reveal how Alteromonas mediterranea schitovirus A5 shares its host recognition module, including tail fiber and cognate chaperone, with phages from distantly related families including Alteromonas myovirus V22. While the V22 chaperone is essential for producing active tail fibers, here we demonstrate production of functional A5 tail fibers regardless of chaperone co-expression. AlphaFold-generated models of tail fiber and chaperone pairs from phages A5, V22, and other Alteromonas phages reveal how amino acid insertions within both A5-like proteins results in a knob domain duplication in the tail fiber and a chaperone β-hairpin "tentacle" extension. These structural modifications are linked to differences in chaperone dependency between the A5 and V22 tail fibers. Structural similarity between the chaperones and intramolecular chaperone domains of other phage RBPs suggests an additional function of these chaperones as transient fiber "caps". Finally, our identification of homologous host recognition modules from morphologically distinct phages implies that horizontal gene transfer and recombination events between unrelated phages may be a more common process than previously thought among Caudoviricetes phages.
Collapse
Affiliation(s)
- Rafael Gonzalez-Serrano
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Centro de Biología Molecular Severo Ochoa, CBMSO-CSIC, Madrid, Spain
| | - Riccardo Rosselli
- Research & Development Department, LABAQUA S.A. Las Atalayas, Alicante, Spain
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | | | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland.
| |
Collapse
|
6
|
Klumpp J, Dunne M, Loessner MJ. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr Opin Microbiol 2023; 71:102240. [PMID: 36446275 DOI: 10.1016/j.mib.2022.102240] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
Bacteriophages are the most abundant biological entity on earth, acting as the predators and evolutionary drivers of bacteria. Owing to their inherent ability to specifically infect and kill bacteria, phages and their encoded endolysins and receptor-binding proteins (RBPs) have enormous potential for development into precision antimicrobials for treatment of bacterial infections and microbial disbalances; or as biocontrol agents to tackle bacterial contaminations during various biotechnological processes. The extraordinary binding specificity of phages and RBPs can be exploited in various areas of bacterial diagnostics and monitoring, from food production to health care. We review and describe the distinctive features of phage RBPs, explain why they are attractive candidates for use as therapeutics and in diagnostics, discuss recent applications using RBPs, and finally provide our perspective on how synthetic technology and artificial intelligence-driven approaches will revolutionize how we use these tools in the future.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
7
|
Jia K, Peng Y, Chen X, Jian H, Jin M, Yi Z, Su M, Dong X, Yi M. A Novel Inovirus Reprograms Metabolism and Motility of Marine Alteromonas. Microbiol Spectr 2022; 10:e0338822. [PMID: 36301121 PMCID: PMC9769780 DOI: 10.1128/spectrum.03388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023] Open
Abstract
Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.
Collapse
Affiliation(s)
- Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
8
|
Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Liang Y, McMinn A, Wang M. Characterization and Genomic Analysis of ssDNA Vibriophage vB_VpaM_PG19 within Microviridae, Representing a Novel Viral Genus. Microbiol Spectr 2022; 10:e0058522. [PMID: 35862991 PMCID: PMC9431446 DOI: 10.1128/spectrum.00585-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
10
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
11
|
Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, Zhang X, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Zhang Y, McMinn A, Wang M. Characterization and genomic analysis of the first Oceanospirillum phage, vB_OliS_GJ44, representing a novel siphoviral cluster. BMC Genomics 2021; 22:675. [PMID: 34544379 PMCID: PMC8451122 DOI: 10.1186/s12864-021-07978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Background Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. Results Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. Conclusions These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage–host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07978-4.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Chengxiang Gu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ziyue Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Malaysia
| | - Yuzhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Shangdong University, Qingdao, 266000, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China. .,The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
12
|
Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S, Jiao N, Zhang R. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs. mSphere 2021; 6:e0045421. [PMID: 34106770 PMCID: PMC8265664 DOI: 10.1128/msphere.00454-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages play critical roles in impacting microbial community succession both ecologically and evolutionarily. Although the majority of phage genetic diversity has been increasingly unveiled, phages infecting members of the ecologically important genus Alteromonas remain poorly understood. Here, we present a comprehensive analysis of a newly isolated alterophage, vB_AcoS-R7M (R7M), to characterize its life cycle traits, genomic features, and putative evolutionary origin. R7M harbors abundant genes identified as host-like auxiliary metabolic genes facilitating viral propagation. Genomic analysis suggested that R7M is distinct from currently known alterophages. Interestingly, R7M was found to share a set of similar characteristics with a number of siphophages infecting diverse aquatic opportunistic copiotrophs. We therefore proposed the creation of one new subfamily (Queuovirinae) to group with these evolutionarily related phages. Notably, tail genes were less likely to be shared among them, and baseplate-related genes varied the most. In-depth analyses indicated that R7M has replaced its distal tail with a Rhodobacter capsulatus gene transfer agent (RcGTA)-like baseplate and further acquired a putative receptor interaction site targeting Alteromonas. These findings suggest that horizontal exchanges of viral tail adsorption apparatuses are widespread and vital for phages to hunt new hosts and to adapt to new niches. IMPORTANCE The evolution and ecology of phages infecting members of Alteromonas, a marine opportunistic genus that is widely distributed and of great ecological significance, remain poorly understood. The present study integrates physiological and genomic evidence to characterize the properties and putative phage-host interactions of a newly isolated Alteromonas phage, vB_AcoS-R7M (R7M). A taxonomic study reveals close evolutionary relationships among R7M and a number of siphophages infecting various aquatic copiotrophs. Their similar head morphology and overall genetic framework suggest their putative common ancestry and the grouping of a new viral subfamily. However, their major difference lies in the viral tail adsorption apparatuses and the horizontal exchanges of which possibly account for variations in host specificity. These findings outline an evolutionary scenario for the emergence of diverse viral lineages of a shared genetic pool and give insights into the genetics and ecology of viral host jumps.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Jiayong Lai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
13
|
Witte S, Zinsli LV, Gonzalez-Serrano R, Matter CI, Loessner MJ, van Mierlo JT, Dunne M. Structural and functional characterization of the receptor binding proteins of Escherichia coli O157 phages EP75 and EP335. Comput Struct Biotechnol J 2021; 19:3416-3426. [PMID: 34194667 PMCID: PMC8217332 DOI: 10.1016/j.csbj.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophages (phages) are widely used as biocontrol agents in food and as antibacterial agents for treatment of food production plant surfaces. An important feature of such phages is broad infectivity towards a given pathogenic species. Phages attach to the surfaces of bacterial cells using receptor binding proteins (RBPs), namely tail fibers or tailspikes (TSPs). The binding range of RBPs is the primary determinant of phage host range and infectivity, and therefore dictates a phage's suitability as an antibacterial agent. Phages EP75 and EP335 broadly infect strains of E. coli serotype O157. To better understand host recognition by both phages, here we focused on characterizing the structures and functions of their RBPs. We identified two distinct tail fibers in the genome of the podovirus EP335: gp12 and gp13. Using fluorescence microscopy, we reveal how gp13 recognizes strains of E. coli serotypes O157 and O26. Phage EP75 belongs to the Kuttervirus genus within the Ackermannviridae family and features a four TSP complex (TSPs 1-4) that is universal among such phages. We demonstrate enzymatic activity of TSP1 (gp167) and TSP2 (gp168) toward the O18A and O157 O-antigens of E. coli, respectively, as well as TSP3 activity (gp169.1) against O4, O7, and O9 Salmonella O-antigens. TSPs of EP75 present high similarity to TSPs from E. coli phages CBA120 (TSP2) and HK620 (TSP1) and Salmonella myovirus Det7 (TSP3), which helps explain the cross-genus infectivity observed for EP75.
Collapse
Affiliation(s)
- Sander Witte
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Léa V. Zinsli
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | | | - Cassandra I. Matter
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J. Loessner
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Joël T. van Mierlo
- Micreos Food Safety B.V., Wageningen, Nieuwe Kanaal 7P, 6709PA, The Netherlands
| | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
15
|
Muangsombut V, Withatanung P, Chantratita N, Chareonsudjai S, Lim J, Galyov EE, Ottiwet O, Sengyee S, Janesomboon S, Loessner MJ, Dunne M, Korbsrisate S. Rapid Clinical Screening of Burkholderia pseudomallei Colonies by a Bacteriophage Tail Fiber-Based Latex Agglutination Assay. Appl Environ Microbiol 2021; 87:e0301920. [PMID: 33811022 PMCID: PMC8174754 DOI: 10.1128/aem.03019-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 01/21/2023] Open
Abstract
Melioidosis is a life-threatening disease in humans caused by the Gram-negative bacterium Burkholderia pseudomallei. As severe septicemic melioidosis can lead to death within 24 to 48 h, a rapid diagnosis of melioidosis is critical for ensuring that an optimal antibiotic course is prescribed to patients. Here, we report the development and evaluation of a bacteriophage tail fiber-based latex agglutination assay for rapid detection of B. pseudomallei infection. Burkholderia phage E094 was isolated from rice paddy fields in northeast Thailand, and the whole genome was sequenced to identify its tail fiber (94TF). The 94TF complex was structurally characterized, which involved identification of a tail assembly protein that forms an essential component of the mature fiber. Recombinant 94TF was conjugated to latex beads and developed into an agglutination-based assay (94TF-LAA). 94TF-LAA was initially tested against a large library of Burkholderia and other bacterial strains before a field evaluation was performed during routine clinical testing. The sensitivity and specificity of the 94TF-LAA were assessed alongside standard biochemical analyses on 300 patient specimens collected from an area of melioidosis endemicity over 11 months. The 94TF-LAA took less than 5 min to produce positive agglutination, demonstrating 98% (95% confidence interval [CI] of 94.2% to 99.59%) sensitivity and 83% (95% CI of 75.64% to 88.35%) specificity compared to biochemical-based detection. Overall, we show how a Burkholderia-specific phage tail fiber can be exploited for rapid detection of B. pseudomallei. The 94TF-LAA has the potential for further development as a supplementary diagnostic to assist in clinical identification of this life-threatening pathogen. IMPORTANCE Rapid diagnosis of melioidosis is essential for ensuring that optimal antibiotic courses are prescribed to patients and thus warrants the development of cost-effective and easy-to-use tests for implementation in underresourced areas such as northeastern Thailand and other tropical regions. Phage tail fibers are an interesting alternative to antibodies for use in various diagnostic assays for different pathogenic bacteria. As exposed appendages of phages, tail fibers are physically robust and easy to manufacture, with many tail fibers (such as 94TF investigated here) capable of targeting a given bacterial species with remarkable specificity. Here, we demonstrate the effectiveness of a latex agglutination assay using a Burkholderia-specific tail fiber 94TF against biochemical-based detection methods that are the standard diagnostic in many areas where melioidosis is endemic.
Collapse
Affiliation(s)
- Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology and Melioidosis Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jiali Lim
- DSO National Laboratories, Singapore
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021; 68:272-281. [PMID: 33744824 PMCID: PMC10163921 DOI: 10.1016/j.copbio.2021.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| |
Collapse
|