1
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Low-dose valine attenuates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) in mice by enhancing leptin sensitivity and modulating the gut microbiome. Mol Metab 2024; 90:102059. [PMID: 39489290 PMCID: PMC11616088 DOI: 10.1016/j.molmet.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVES Elevated circulating branched-chain amino acids (BCAAs) have been associated with obesity, insulin resistance, and MASLD. Nonetheless, BCAA supplementation has been shown to provide protective outcomes towards the intervention of MASLD. Currently, there is a lack of study towards the contribution of the BCAA: valine on MASLD. Herein, the effect of low-dose valine supplementation was investigated for its role in the progression of MASLD. METHODS C57BL/6J mice were fed a high-fat/high-cholesterol diet (HFD) to induce MASLD. Upon the establishment of MASLD, valine was supplemented via voluntary oral administration. Clinical and biochemical parameters associated with MASLD were measured, and molecular mechanism and gut microbiota modulation from the effect of valine were investigated. RESULTS Low-dose valine was found to attenuate the progression of MASLD, significantly reducing the gain in body weight, liver weight, and epididymal white adipose tissue (eWAT) weight, while also attenuating hyperglycemia and hyperleptinemia, and improving serum lipid profiles. Mechanistically, in the liver, genes related to hepatic lipogenesis and cholesterol biosynthesis were downregulated, while those associated with fatty acid oxidation, autophagy, and antioxidant capacity were upregulated, and AMPK pathway activity was enhanced. Liver and hypothalamic leptin resistance and inflammation were also attenuated, allowing better appetite control in mice fed a HFD and leading to reduced food intake. Additionally, metabolic flexibility in the eWAT was improved, and the gut microbiome was modulated by low-dose valine supplementation. CONCLUSION Low-dose valine supplementation attenuates MASLD by enhancing systemic leptin sensitivity and modulating the gut microbiome.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Emily K K Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Marsena J Ismaiah
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hoi Kit Matthew Leung
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
3
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Nakano H, Sakao K, Wada K, Hou DX. Ameliorative Effects of Anthocyanin Metabolites on Western Diet-Induced NAFLD by Modulating Co-Occurrence Networks of Gut Microbiome. Microorganisms 2023; 11:2408. [PMID: 37894066 PMCID: PMC10609007 DOI: 10.3390/microorganisms11102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Anthocyanins (Acn) have been reported to have preventive effects on Western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). However, the amount of Acn that reached the bloodstream were less than 1%, suggesting that anthocyanin metabolites (Acn-M) in the gut may contribute to their in vivo effects. This study is focused on a gut microbiota investigation to elucidate the effect of two major Acn-M, protocatechuic acid (PC) and phloroglucinol carboxaldehyde (PG), on NAFLD prevention. C57BL/6N male mice were divided into five groups and fed with a normal diet (ND), WD, WD + 0.5% PC, WD + 0.5% PG and WD + a mixture of 0.25% PC + 0.25% PG (CG) for 12 weeks. The results revealed that WD-fed mice showed a significant increase in final body weight, epididymis fat weight, liver weight and fat accumulation rate, serum total cholesterol, alanine aminotransferase, monocyte chemoattractant protein 1, and 2-thiobarbituric acid reactive substances. At the same time, these indices were significantly decreased by Acn-M in the order of PG, CG > PC. In particular, PG significantly decreased serum glucose and insulin resistance. Gut microbiome analysis revealed that PG significantly increased the relative abundance of Parabacteroides, Prevotella, Prevotella/Bacteroides ratio, and upregulated glucose degradation pathway. Interestingly, the co-occurrence networks of Lachnospiraceae and Desulfovibrionaceae in the PC and PG groups were similar to the ND group and different to WD group. These data suggest that PC and PG were able to recover the gut microbiome networks and functions from dysbiosis caused by WD. Therefore, PG might act as a master metabolite for anthocyanins and prevent WD-induced NAFLD and gut dysbiosis.
Collapse
Affiliation(s)
- Hironobu Nakano
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
| | - Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Koji Wada
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara 903-0213, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; (H.N.); (K.S.); (K.W.)
- Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|