1
|
He B, Zhu TT, Liang Y, Wei HJ, Huang ZL, Liang LJ, Zhong JH, Luo Y, Lian XL, Zhao DH, Liao XP, Liu YH, Ren H, Sun J. Adaptive evolution in asymptomatic host confers MDR Salmonella with enhanced environmental persistence and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168340. [PMID: 37931815 DOI: 10.1016/j.scitotenv.2023.168340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
As a common cause for food-borne diseases, the Salmonella spp. are generally prevalent among livestock, whereby they are likely to be transmitted to human via environmental contamination. To explore the potential mechanism for prevalence of MDR Salmonella and its risk for dissemination via contaminated environments, we profiled the colonization dynamics of MDR Salmonella in chicken, herein we found that an adaptive evolution, driven by mutagenesis in a small protein-encoding gene (STM14_1829), conferred the multidrug resistant (MDR) Salmonella with increased fitness in asymptomatic host. Then the mechanistic study demonstrated that only one amino acid substitution in small protein STM14_1829 rendered MDR Salmonella capable to better invade and persist in phagocytotic cells by modulating bacterial flagella overexpression. Concerningly, the evolved Salmonella was also more resilient to the potential stressors generally found in environments and food processing, including heat, cold, adverse pH and oxidations. It implied that the evolved subpopulations are plausibly more persistent in environments once they contaminated through animal manure or human excreta. Moreover, the evolution promoted the pathogenesis caused by MDR Salmonella in susceptible hosts, resulting in higher risk for dissemination of pathogens via contaminated environments. Together, our data provided the novel insights into that in vivo adaptive evolution benefits Salmonella colonization, persistence and pathogenesis, by promoting bacterial tolerance via modulating flagella expression. These findings may explain the rationale behind the increasing prevalence of certain MDR Salmonella clones in livestock and associated environment, and underscoring the need for advanced strategies to tackle the possible evolution of such zoonotic pathogens.
Collapse
Affiliation(s)
- Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ting-Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Jing Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jie Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Jia-Hao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin-Lei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Yang X, Yang S, Liu S, Liu S, Zhang J, Guo W, Wang J, Song Z, Xue L, Chen M, Wu S, Wei X, Wu Q. Characterization of quinolone resistance in Salmonella enterica serovar Typhimurium and its monophasic variants from food and patients in China. J Glob Antimicrob Resist 2023; 35:216-222. [PMID: 37797810 DOI: 10.1016/j.jgar.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVES The study aimed to characterize the quinolone resistance of Salmonella enterica serovar Typhimurium and its monophasic variant (Salmonella enterica serovar 1,4,[5],12:i:-) isolated from food and patients in China. METHODS All of the isolates were assessed for quinolone susceptibility via the broth microdilution method. Then, the isolates were checked for mutations within quinolone resistance-determining regions of gyrA, gyrB, parC, and parE and were examined for plasmid-mediated quinolone resistance genes. RESULTS High rates of resistance to nalidixic acid in the S. Typhimurium (70.7%) and S. 1,4,[5],12:i:- (41.9%) isolates were observed, and a considerable proportion of isolates with reduced susceptibility to ciprofloxacin and levofloxacin were also detected. The high frequency of mutations in GyrA (60.8%) and a variety of genes (aac[6']-Ib-cr [23.2%], oqxAB [19.2%], qnrS [13.6%], and qnrA [3.2%]) conferring quinolone resistance in these Salmonella isolates were noteworthy. Lastly, the isolates carrying qnrS for transferability and transmission of the quinolone resistance were analysed by conjugation. Multiple locus variable-number tandem repeat analysis profiles indicated that some qnrS-positive isolates were clonally related, whilst the other isolates were genetically divergent. This suggested that both clonal spread of resistant strains and horizontal transmission of the plasmid-mediated resistance genes contributed to the dissemination of qnrS-positive Salmonella isolates. CONCLUSION This study highlights the prevalence of quinolone-resistant S. Typhimurium and S. 1,4,[5],12:i:- in China, posing a threat to public health.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shiyuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shengrong Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuxiang Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhongjian Song
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
4
|
Sun Y, Han Y, Qian C, Zhang Q, Yao Z, Zeng W, Zhou T, Wang Z. A novel transposon Tn7540 carrying bla NDM-9 and fosA3 in chromosome of a pathogenic multidrug-resistant Salmonella enterica serovar Indiana isolated from human faeces. J Glob Antimicrob Resist 2023; 33:72-77. [PMID: 36854357 DOI: 10.1016/j.jgar.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVES Emergence of multidrug-resistant (MDR) Salmonella enterica serovar Indiana has raised global concern. Mobile genetic elements (MGEs) play vital roles in accelerating the dissemination of resistance genes in bacteria communities. The study aims to improve our understanding of the underlying resistance mechanisms and characterize the MGEs in a MDR S. Indiana isolate. METHODS Here, we report the characteristics of a MDR pathogenic S. Indiana isolate. The antimicrobial susceptibility pattern of S. Indiana QT6365 was determined. The genomic structure of the chromosome and the plasmid, serotype, and multi-locus sequence type were analysed by whole genome sequencing. The circular form derived from IS26-flanked transposon was confirmed by reverse polymerase chain reaction and sequencing. RESULTS S. Indiana QT6365 exhibited resistance to all tested antimicrobials except for aztreonam, amikacin, polymyxin, and tigecycline, was defined as MDR, and belonged to ST17. S. Indiana QT6365 was closely related with food resource S. Indiana C629 with similar resistance gene profiles. Multiple resistance genes are mainly carried by a novel transposon Tn7540 located on the chromosome and an IncHI2/HI2A/N plasmid. Sequence analysis and the formed circular intermediate suggested Tn7540 might be generated through homologous recombination by IS26-bounded translocatable units (IS26-fosA-IS26-intI1-dfrA12-aadA2-sul1-ISCR1-blaNDM-9-IS26). CONCLUSIONS To the best of our knowledge, this is the first report of the novel chromosomal transposon possessing blaNDM-9 and fosA3 in S. Indiana isolated from human specimen, which might facilitate the dissemination of resistance genes and should arouse serious awareness.
Collapse
Affiliation(s)
- Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Yijia Han
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi Zhang
- Department of Clinical Laboratory, Yongjia Hospital of Traditional Chinese Medicine, Wenzhou, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China.
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China.
| |
Collapse
|