1
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Kim HG, Kim JH, Yu T, Cho JY. Functional Involvement of TANK-Binding Kinase 1 in the MyD88-Dependent NF- κB Pathway Through Syk. Mediators Inflamm 2024; 2024:8634515. [PMID: 39493293 PMCID: PMC11531359 DOI: 10.1155/2024/8634515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Inflammation is a vital immune defense mechanism regulated by Toll-like receptors (TLRs) and the nuclear factor-kappa B (NF-κB) pathway. TANK-binding kinase 1 (TBK1) is central to immunity and inflammation and influences antiviral responses and cellular processes. However, the precise role of TBK1 in modulating the NF-κB pathway through interactions with other proteins, such as spleen tyrosine kinase (Syk), remains poorly understood. As dysregulation of TBK1 and NF-κB can lead to a variety of diseases, they are important therapeutic targets. In this work, inflammatory processes involving the TBK1-Syk-NF-κB pathway were elucidated using lipopolysaccharide (LPS)-induced macrophages; human embryonic kidney 293 (HEK293) cells overexpressing MyD88, TBK1, and Syk proteins and their mutants; and real-time polymerase chain reaction (PCR), immunoblotting analyses, and kinase assays. TBK1 was activated in LPS-, poly I:C-, and Pam3CSK-stimulated macrophages. Transcript levels of TNF, NOS2, and IL1B were increased in cells overexpressing TBK1 but not in cells overexpressing TBK1 K38A. The transcription of TNF, NOS2, and IL1B and NF-κB luciferase activity were inhibited by silencing TBK1 in LPS-stimulated RAW264.7 cells and MyD88-transfected HEK293 cells. Syk was the key mediator of the TBK1-dependent NF-κB pathway and bound directly to the coiled coil domain of TBK1, which was necessary to activate Syk and the Syk-p85 pathway. This research advances the understanding of the role of TBK1 in NF-κB signaling, emphasizing Syk as a key mediator. The interaction between TBK1 and Syk has potential for precise immune modulation that can be applied to treat immune-related disorders.
Collapse
Affiliation(s)
- Han Gyung Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Sun L, Huang K, Huang X. Establishment of a STING-Deficient HepG2 Cell Line through CRISPR/Cas9 System and Evaluation of Its Effects on Salmonella Replication. J Pathog 2024; 2024:9615181. [PMID: 39301082 PMCID: PMC11412752 DOI: 10.1155/2024/9615181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/29/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024] Open
Abstract
Background Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a common food-borne pathogen that causes gastroenteritis and can lead to life-threatening systemic disease when it spreads to vital organs, such as the liver. Stimulator of interferon genes (STING) is a crucial regulator of the host's innate immune response to viral infections, while its role in bacterial infections remains controversial. This study aims to establish a STING-deficient HepG2 cell line through the CRISPR/Cas9 system and evaluate its effects on Salmonella replication. Methods In this study, a STING knockout HepG2 cell line was constructed through the application of CRISPR/Cas9 technology. We assessed cell viability and proliferation using the CCK-8 assay. Subsequently, we investigated the effect of STING deletion on Salmonella replication and the expression of type I interferon-related genes. Results The STING knockout HepG2 cell line was successfully constructed using the CRISPR/Cas9 system. The proliferation capability was diminished in STING-deficient HepG2 cells, while Salmonella Typhimurium replication in these cells was augmented compared to the wild-type (WT) group. Following Salmonella infection, the transcriptional responses of type I interferon-related genes, such as IFNB1 and ISG15, were inhibited in STING-deficient HepG2 cells. Conclusions We successfully constructed a STING-deficient cell line. Our finding of increased Salmonella Typhimurium replication in STING-deficient HepG2 cells provides the basis for further studies on pathogen-host interactions.
Collapse
Affiliation(s)
- Lanqing Sun
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xuan Huang
- Department of Laboratory Medicine Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Shi C, Tang Z, Jin Z, Huang S, Xu X, Qu C, Lin TH. Characterization of DmToll and DmToll7 homologue in Litopenaeus vannamei based on structure analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105209. [PMID: 38838948 DOI: 10.1016/j.dci.2024.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that recognize invading pathogens and activate downstream signaling pathways. The number of 10 Tolls is found in Litopenaeus vannamei but have not yet been identified as the corresponding Toll homologue of model animal. In this study, we predicted the three-dimensional (3D) structures of 10 LvTolls (LvToll1-10) with AlphaFold2 program. The per-residue local distance difference test (pLDDT) scores of LvTolls showed the predicted structure of LvTolls had high accuracy (pLDDT>70). By structural analysis, 3D structures of LvToll2 and LvToll3 had high similarity with Drosophila melanogaster Toll and Toll7, respectively. 3D structure of LvToll7 and LvToll10 were not similar to that of other LvTolls. Moreover, we also predicted that LvSpätzle4 had high structural similarity to DmSpätzle. There were 9 potential hydrogen bonds in LvToll2-LvSpätzle4 complex. Importantly, co-immunoprecipitation assay showed that LvToll2 could bind with LvSpätzle4. Collectively, this study provides new insight for researching invertebrate immunity by identifying the protein of model animal homologue.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhuyun Tang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhixin Jin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shan Huang
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China; Department of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Xiuyue Xu
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China; Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Ta-Hui Lin
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Department of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| |
Collapse
|
5
|
Cebani L, Mvubu NE. Can We Exploit Inflammasomes for Host-Directed Therapy in the Fight against Mycobacterium tuberculosis Infection? Int J Mol Sci 2024; 25:8196. [PMID: 39125766 PMCID: PMC11311975 DOI: 10.3390/ijms25158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a major global health issue, with around 10 million new cases annually. Advances in TB immunology have improved our understanding of host signaling pathways, leading to innovative therapeutic strategies. Inflammasomes, protein complexes organized by cytosolic pattern recognition receptors (PRRs), play a crucial role in the immune response to M. tb by activating caspase 1, which matures proinflammatory cytokines IL1β and IL18. While inflammation is necessary to fight infection, excessive or dysregulated inflammation can cause tissue damage, highlighting the need for precise inflammasome regulation. Drug-resistant TB strains have spurred research into adjunctive host-directed therapies (HDTs) that target inflammasome pathways to control inflammation. Canonical and non-canonical inflammasome pathways can trigger excessive inflammation, leading to immune system exhaustion and M. tb spread. Novel HDT interventions can leverage precision medicine by tailoring treatments to individual inflammasome responses. Studies show that medicinal plant derivatives like silybin, andrographolide, and micheliolide and small molecules such as OLT1177, INF39, CY-09, JJ002, Ac-YVAD-cmk, TAK-242, and MCC950 can modulate inflammasome activation. Molecular tools like gene silencing and knockouts may also be used for severe TB cases. This review explores these strategies as potential adjunctive HDTs in fighting TB.
Collapse
Affiliation(s)
| | - Nontobeko E. Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
6
|
Liu X, Shen M, Bing T, Zhang X, Li Y, Cai Q, Yang X, Yu Y. A Bioactive Injectable Hydrogel Regulates Tumor Metastasis and Wound Healing for Melanoma via NIR-Light Triggered Hyperthermia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402208. [PMID: 38704692 PMCID: PMC11234446 DOI: 10.1002/advs.202402208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Surgical resection remains the mainstream treatment for malignant melanoma. However, challenges in wound healing and residual tumor metastasis pose significant hurdles, resulting in high recurrence rates in patients. Herein, a bioactive injectable hydrogel (BG-Mngel) formed by crosslinking sodium alginate (SA) with manganese-doped bioactive glass (BG-Mn) is developed as a versatile platform for anti-tumor immunotherapy and postoperative wound healing for melanoma. The incorporation of Mn2+ within bioactive glass (BG) can activate the cGAS-STING immune pathway to elicit robust immune response for cancer immunotherapy. Furthermore, doping Mn2+ in BG endows system with excellent photothermal properties, hence facilitating STING activation and reversing the tumor immune-suppressive microenvironment. BG exhibits favorable angiogenic capacity and tissue regenerative potential, and Mn2+ promotes cell migration in vitro. When combining BG-Mngel with anti-PD-1 antibody (α-PD-1) for the treatment of malignant melanoma, it shows enhanced anti-tumor immune response and long-term immune memory response. Remarkably, BG-Mngel can upregulate the expression of genes related to blood vessel formation and promote skin tissue regeneration when treating full-thickness wounds. Overall, BG-MnGel serves as an effective adjuvant therapy to regulate tumor metastasis and wound healing for malignant melanoma.
Collapse
Affiliation(s)
- Xueyi Liu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Meifang Shen
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Tiejun Bing
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Xinyun Zhang
- Immunology and Oncology CenterICE BioscienceBeijing100176China
| | - Yifan Li
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Qing Cai
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xiaoping Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yingjie Yu
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Laboratory of Biomedical MaterialsCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
7
|
Fritsch LE, Kelly C, Leonard J, de Jager C, Wei X, Brindley S, Harris EA, Kaloss AM, DeFoor N, Paul S, O'Malley H, Ju J, Olsen ML, Theus MH, Pickrell AM. STING-Dependent Signaling in Microglia or Peripheral Immune Cells Orchestrates the Early Inflammatory Response and Influences Brain Injury Outcome. J Neurosci 2024; 44:e0191232024. [PMID: 38360749 PMCID: PMC10957216 DOI: 10.1523/jneurosci.0191-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-β (IL-1β), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.
Collapse
Affiliation(s)
- Lauren E Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Caroline de Jager
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia 24016
| | - Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Samantha Brindley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Elizabeth A Harris
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alexandra M Kaloss
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Nicole DeFoor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hannah O'Malley
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Jing Ju
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
8
|
Liu J, Zhou J, Luan Y, Li X, Meng X, Liao W, Tang J, Wang Z. cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell Commun Signal 2024; 22:22. [PMID: 38195584 PMCID: PMC10775518 DOI: 10.1186/s12964-023-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Intracellular DNA-sensing pathway cGAS-STING, inflammasomes and pyroptosis act as critical natural immune signaling axes for microbial infection, chronic inflammation, cancer progression and organ degeneration, but the mechanism and regulation of the crosstalk network remain unclear. Cellular stress disrupts mitochondrial homeostasis, facilitates the opening of mitochondrial permeability transition pore and the leakage of mitochondrial DNA to cell membrane, triggers inflammatory responses by activating cGAS-STING signaling, and subsequently induces inflammasomes activation and the onset of pyroptosis. Meanwhile, the inflammasome-associated protein caspase-1, Gasdermin D, the CARD domain of ASC and the potassium channel are involved in regulating cGAS-STING pathway. Importantly, this crosstalk network has a cascade amplification effect that exacerbates the immuno-inflammatory response, worsening the pathological process of inflammatory and autoimmune diseases. Given the importance of this crosstalk network of cGAS-STING, inflammasomes and pyroptosis in the regulation of innate immunity, it is emerging as a new avenue to explore the mechanisms of multiple disease pathogenesis. Therefore, efforts to define strategies to selectively modulate cGAS-STING, inflammasomes and pyroptosis in different disease settings have been or are ongoing. In this review, we will describe how this mechanistic understanding is driving possible therapeutics targeting this crosstalk network, focusing on the interacting or regulatory proteins, pathways, and a regulatory mitochondrial hub between cGAS-STING, inflammasomes, and pyroptosis. SHORT CONCLUSION This review aims to provide insight into the critical roles and regulatory mechanisms of the crosstalk network of cGAS-STING, inflammasomes and pyroptosis, and to highlight some promising directions for future research and intervention.
Collapse
Affiliation(s)
- Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Zhou
- The Second Hospital of Ningbo, Ningbo, 315099, China
| | - Yuling Luan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Xiangrui Meng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zheilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
9
|
Ardanuy J, Scanlon KM, Skerry C, Carbonetti NH. DNA-Dependent Interferon Induction and Lung Inflammation in Bordetella pertussis Infection. J Interferon Cytokine Res 2023; 43:478-486. [PMID: 37651198 PMCID: PMC10599430 DOI: 10.1089/jir.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
Pertussis, caused by Bordetella pertussis, is a resurgent respiratory disease but the molecular mechanisms underlying pathogenesis are poorly understood. We recently showed the importance of type I and type III interferon (IFN) induction and signaling for the development of lung inflammation in B. pertussis-infected mouse models. Classically, these IFNs are induced by signaling through a variety of pattern recognition receptors (PRRs) on host cells. Here, we found that the PRR signaling adaptor molecules MyD88 and TRIF contribute to IFN induction and lung inflammatory pathology during B. pertussis infection. However, the PRRs Toll-like receptors (TLR) 3 and TLR4, which signal through TRIF and MyD88, respectively, played no role in IFN induction. Instead, the DNA-sensing PRRs, TLR9 and STING, were important for induction of type I/III IFN and promotion of inflammatory pathology, indicating that DNA is a major inducer of lung IFN responses in B. pertussis infection. These results increase our understanding of this host-pathogen interaction and identify potential targets for host-directed therapies to reduce B. pertussis-mediated pathology.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen M. Scanlon
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ciaran Skerry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas H. Carbonetti
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6189254. [PMID: 36457340 PMCID: PMC9708357 DOI: 10.1155/2022/6189254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus illness 2019 is a significant worldwide health danger that began with severe acute respiratory syndrome coronavirus two infections. It is the largest pandemic of our lifetime to date, affecting millions of people and crippling economies globally. There is currently no viable therapy for this devastating condition. The fast spread of SARS-CoV-2 underlines the critical need for favorable treatments to prevent SARS-CoV-2 infection and dissemination. Regulating the upstream cytokine release might be a possible method for COVID-19 therapy. We propose that more consideration be paid to the dysregulated IFN-I release in COVID-19 and that cGAS and STING be considered therapeutic targets for avoiding cytokine storms and as critical components in host antiviral defense mechanisms.
Collapse
|
11
|
Manes NP, Calzola JM, Kaplan PR, Fraser IDC, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Absolute protein quantitation of the mouse macrophage Toll-like receptor and chemotaxis pathways. Sci Data 2022; 9:491. [PMID: 35961990 PMCID: PMC9374760 DOI: 10.1038/s41597-022-01612-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways. Measurement(s) | molecules per cell | Technology Type(s) | nanoflow high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry | Sample Characteristic - Organism | Mus musculus |
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica M Calzola
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pauline R Kaplan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Iain D C Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Martin Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
12
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
13
|
Abstract
Interferons (IFNs) are one of the hallmarks of host antiviral immunity. IFNs exert their antiviral activities through the induction of IFN-stimulated genes (ISGs) and antiviral proteins; however, the mechanism by which ISGs inhibit adenovirus (Ad) replication is not clearly understood. IFNs repress Ad immediate early gene expression and, consequently, all subsequent aspects of the viral life cycle. In this study, we found that IFN-induced protein with tetratricopeptide repeats 3, IFIT3 (ISG60), restricts Ad replication. IFIT3 repressed Ad E1A immediate early gene expression but did not alter Ad genome entry into the nucleus. Expression of IFIT3 led to phosphorylation of TBK1, IRF3, and STAT1; increased expression of IFNβ and ISGs; and required IFIT1 and IFIT2 partner proteins. During RNA virus infections, it is known that IFIT3 stimulates IFN production through mitochondrial antiviral signaling (MAVS)-mediated activation of TBK1 which synergizes activation of IRF3 and NF-κB. MAVS or TBK1 depletion in cells expressing IFIT3 blocked IFN signaling and reversed the Ad replication restriction. In addition, STING depletion phenocopied the effect suggesting that IFIT3 activates the STING pathway with cross talk to the MAVS pathway. This occurs independently of viral pathogen-associated molecular patterns (PAMPs). These results demonstrate that the expression of a single ISG, IFIT3, activates IFN signaling and establishes a cellular antiviral state independent of viral PAMPs. IMPORTANCE IFITs belong to a family of IFN-induced proteins that have broad antiviral functions, primarily studied with RNA viruses leaving a gap of knowledge on the effects of these proteins on DNA viruses. In this study we show that IFIT3, with its partner proteins IFIT1 and IFIT2, specifically restricts replication of human Ad, a DNA virus, by stimulating IFNβ production via the STING and MAVS pathways. This effect enhanced the IFN response and is independent of viral PAMPs. These results reveal a novel mechanism of activation of IFN signaling to enhance cellular antiviral responses.
Collapse
|
14
|
Pogostin BH, McHugh KJ. Novel Vaccine Adjuvants as Key Tools for Improving Pandemic Preparedness. Bioengineering (Basel) 2021; 8:155. [PMID: 34821721 PMCID: PMC8615241 DOI: 10.3390/bioengineering8110155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Future infectious disease outbreaks are inevitable; therefore, it is critical that we maximize our readiness for these events by preparing effective public health policies and healthcare innovations. Although we do not know the nature of future pathogens, antigen-agnostic platforms have the potential to be broadly useful in the rapid response to an emerging infection-particularly in the case of vaccines. During the current COVID-19 pandemic, recent advances in mRNA engineering have proven paramount in the rapid design and production of effective vaccines. Comparatively, however, the development of new adjuvants capable of enhancing vaccine efficacy has been lagging. Despite massive improvements in our understanding of immunology, fewer than ten adjuvants have been approved for human use in the century since the discovery of the first adjuvant. Modern adjuvants can improve vaccines against future pathogens by reducing cost, improving antigen immunogenicity, and increasing antigen stability. In this perspective, we survey the current state of adjuvant use, highlight potentially impactful preclinical adjuvants, and propose new measures to accelerate adjuvant safety testing and technology sharing to enable the use of "off-the-shelf" adjuvant platforms for rapid vaccine testing and deployment in the face of future pandemics.
Collapse
Affiliation(s)
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA;
| |
Collapse
|