1
|
Cristinziano M, Shashkina E, Chen L, Xiao J, Miller MB, Doligalski C, Coakley R, Lobo LJ, Footer B, Bartelt L, Abad L, Russell DA, Garlena R, Lauer MJ, Viland M, Kaganovsky A, Mowry E, Jacobs-Sera D, van Duin D, Kreiswirth BN, Hatfull GF, Friedland A. Use of epigenetically modified bacteriophage and dual beta-lactams to treat a Mycobacterium abscessus sternal wound infection. Nat Commun 2024; 15:10360. [PMID: 39609405 PMCID: PMC11604996 DOI: 10.1038/s41467-024-54666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Nontuberculous mycobacterium (NTM) infections are challenging to manage and are frequently non-responsive to aggressive but poorly-tolerated antibiotic therapies. Immunosuppressed lung transplant patients are susceptible to NTM infections and poor patient outcomes are common. Bacteriophages present an alternative treatment option and are associated with favorable clinical outcomes. Similarly, dual beta-lactam combinations show promise in vitro, but clinical use is sparse. We report here a patient with an uncontrolled Mycobacterium abscessus infection following a bilateral lung transplant and failed antibiotic therapy. Both smooth and rough colony morphotype strains were initially present, but treatment with two phages that kill the rough strain - including epigenetic-modification to overcome restriction - resulted in isolation of only the smooth strain. The rough and smooth strains have similar antibiotic susceptibilities suggesting that the phages specifically eliminated the rough strain. Dual beta-lactam therapy with meropenem and ceftazidime-avibactam provided further clinical improvement, and the phages act synergistically with meropenem in vitro.
Collapse
Affiliation(s)
- Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Shashkina
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Jaime Xiao
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Christina Doligalski
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of North Carolina School of Pharmacy, Chapel Hill, NC, USA
| | - Raymond Coakley
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Leonard Jason Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Brent Footer
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Luther Bartelt
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maggie Viland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Kaganovsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Mowry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Nutley, NJ, USA.
- Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anne Friedland
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
3
|
Gauthier CH, Hatfull GF. A Bioinformatic Ecosystem for Bacteriophage Genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 2024; 16:1278. [PMID: 39205252 PMCID: PMC11359507 DOI: 10.3390/v16081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The last thirty years have seen a meteoric rise in the number of sequenced bacteriophage genomes, spurred on by both the rise and success of groups working to isolate and characterize phages, and the rapid and significant technological improvements and reduced costs associated with sequencing their genomes. Over the course of these decades, the tools used to glean evolutionary insights from these sequences have grown more complex and sophisticated, and we describe here the suite of computational and bioinformatic tools used extensively by the integrated research-education communities such as SEA-PHAGES and PHIRE, which are jointly responsible for 25% of all complete phage genomes in the RefSeq database. These tools are used to integrate and analyze phage genome data from different sources, for identification and precise extraction of prophages from bacterial genomes, computing "phamilies" of related genes, and displaying the complex nucleotide and amino acid level mosaicism of these genomes. While over 50,000 SEA-PHAGES students have primarily benefitted from these tools, they are freely available for the phage community at large.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| |
Collapse
|
4
|
Raman SK, Siva Reddy DV, Jain V, Bajpai U, Misra A, Singh AK. Mycobacteriophages: therapeutic approach for mycobacterial infections. Drug Discov Today 2024; 29:104049. [PMID: 38830505 DOI: 10.1016/j.drudis.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.
Collapse
Affiliation(s)
- Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - D V Siva Reddy
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji , New Delhi 110019, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra 282004, Uttar Pradesh, India.
| |
Collapse
|
5
|
Das R, Nadar K, Arora R, Bajpai U. Unlocking prophage potential: In silico and experimental analysis of a novel Mycobacterium fortuitum LysinB containing a peptidoglycan-binding domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580446. [PMID: 38405724 PMCID: PMC10888907 DOI: 10.1101/2024.02.15.580446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Endolysins are highly evolved bacteriophage-encoded lytic enzymes produced to damage the bacterial cell wall for phage progeny release. They offer promising potential as highly specific lytic proteins with a low chance of bacterial resistance. The diversity in lysin sequences and domain organization can be staggering. In silico analysis of bacteriophage and prophage genomes can help identify endolysins exhibiting unique features and high antibacterial activity, hence feeding the pipeline of narrow-spectrum protein antibiotics. Mycobacteriophage lysis cassettes mostly have two lytic enzymes, LysinA and LysinB. The enzyme LysinA targets peptidoglycan in the cell wall and possesses a modular architecture. LysinB typically contains a single domain and acts upon the mycolyl ester linkages in mycolyl-arabinogalactan-peptidoglycan (Payne et al., 2010). This study aimed to find novel LysinBs against Mycobacterium fortuitum. After a detailed in silico characterization of lysis cassettes from three M. fortuitum prophages, we chose to work on a LysinB (hereafter described as LysinB_MF) found in an incomplete prophage (phiE1336, 9.4 kb in strain E1336). LysinB_MF showed low sequence similarity with any other endolysins in the database and formed a separate clade on phylogenetic analysis. LysinB_MF's structure, extracted from the AlphaFold Protein Structure Database, demonstrated a modular architecture with two structurally distinct domains: a peptidoglycan-binding domain (PGBD) at the N-terminal and the characteristic alpha/beta hydrolase domain connected via a linker peptide. We found the alpha/beta hydrolase domain, which is the enzyme-active domain (EAD), contains the conserved Ser-Asp-His catalytic triad with a tunnel-like topology and forms intermolecular hydrogen bonds. The PGBD shows structural similarity to the cell-wall binding domain of an amidase from Clostridium acetobutylicum, hinting at its acquisition due to domain mobility. Our in silico electrostatic potential analysis suggested that PGBD might be essential to the enzyme activity. This was experimentally validated by generating a truncated version of the enzyme, which demonstrated about six-fold decreased activity compared to its native form. The antimycobacterial activity of this enzyme was also compromised in its absence. Based on our analysis, PGBD emerged as an integral constituent of enzymes with diverse functional properties and is predicted to be a conserved cross-kingdom. Overall, this study highlights the importance of mining mycobacterial prophages as a novel endolysin source. It also provides unique insights into the diverse architecture of mycobacteriophage-encoded endolysins and the importance of functional domains for their catalytic activities.
Collapse
Affiliation(s)
- Ritam Das
- Faculty of Biological Sciences, Friedrich Schiller University, Jena-07737, Germany
- Department of Life Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji-110019, New Delhi, India
| | - Kanika Nadar
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji-110019, New Delhi, India
| | - Ritu Arora
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji-110019, New Delhi, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji-110019, New Delhi, India
| |
Collapse
|
6
|
Koonin EV, Kuhn JH, Dolja VV, Krupovic M. Megataxonomy and global ecology of the virosphere. THE ISME JOURNAL 2024; 18:wrad042. [PMID: 38365236 PMCID: PMC10848233 DOI: 10.1093/ismejo/wrad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Nearly all organisms are hosts to multiple viruses that collectively appear to be the most abundant biological entities in the biosphere. With recent advances in metagenomics and metatranscriptomics, the known diversity of viruses substantially expanded. Comparative analysis of these viruses using advanced computational methods culminated in the reconstruction of the evolution of major groups of viruses and enabled the construction of a virus megataxonomy, which has been formally adopted by the International Committee on Taxonomy of Viruses. This comprehensive taxonomy consists of six virus realms, which are aspired to be monophyletic and assembled based on the conservation of hallmark proteins involved in capsid structure formation or genome replication. The viruses in different major taxa substantially differ in host range and accordingly in ecological niches. In this review article, we outline the latest developments in virus megataxonomy and the recent discoveries that will likely lead to reassessment of some major taxa, in particular, split of three of the current six realms into two or more independent realms. We then discuss the correspondence between virus taxonomy and the distribution of viruses among hosts and ecological niches, as well as the abundance of viruses versus cells in different habitats. The distribution of viruses across environments appears to be primarily determined by the host ranges, i.e. the virome is shaped by the composition of the biome in a given habitat, which itself is affected by abiotic factors.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, United States
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 75015 Paris, France
| |
Collapse
|
7
|
Pei Z, Liu Y, Chen Y, Pan T, Sun X, Wang H, Ross RP, Lu W, Chen W. A universe of human gut-derived bacterial prophages: unveiling the hidden viral players in intestinal microecology. Gut Microbes 2024; 16:2309684. [PMID: 39679618 DOI: 10.1080/19490976.2024.2309684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 12/17/2024] Open
Abstract
Prophages, which are an existing form of temperate phages that integrate into host genomes, have been found extensively present in diverse bacterial species. The human gut microbiome, characterized by its complexity, dynamism, and interconnectivity among multiple species, remains inadequately understood in terms of the global landscape of bacterial prophages. Here, we analyzed 43,942 human gut-derived bacterial genomes (439 species of 12 phyla) and identified 105,613 prophage regions in ~ 92% of them. 16254 complete prophages were distributed in ~ 24% of bacteria, indicating an extremely uneven prophage distribution across various species within the human gut. Among all identified prophages, ~4% possessed cross-genera (2-20 genera) integration capacity, while ~ 17% displayed broad infection host ranges (targeting 2-35 genera). Functional gene annotation revealed that antibiotic-resistance genes and toxin-related genes were detected in ~ 2.5% and ~ 5.8% of all prophages, respectively. Furthermore, through sequence alignments between our obtained prophages and publicly available human gut phageome contigs, we have observed that ~ 72% of non-redundant prophages are previously unreported genomes, and they illuminate ~ 6.5-9.5% of the individual intestinal "viral dark matter". Our study represents the first comprehensive depiction of human gut-derived prophages, provides a substantial collection of reference sequences for forthcoming human gut phageome-related investigations, and potentially enables better risk assessment of prophage dissemination.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Yufei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Yutao Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Xihao Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R China
| |
Collapse
|