1
|
Mehlferber EC, Arnault G, Joshi B, Partida-Martinez LP, Patras KA, Simonin M, Koskella B. A cross-systems primer for synthetic microbial communities. Nat Microbiol 2024; 9:2765-2773. [PMID: 39478083 DOI: 10.1038/s41564-024-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024]
Abstract
The design and use of synthetic communities, or SynComs, is one of the most promising strategies for disentangling the complex interactions within microbial communities, and between these communities and their hosts. Compared to natural communities, these simplified consortia provide the opportunity to study ecological interactions at tractable scales, as well as facilitating reproducibility and fostering interdisciplinary science. However, the effective implementation of the SynCom approach requires several important considerations regarding the development and application of these model systems. There are also emerging ethical considerations when both designing and deploying SynComs in clinical, agricultural or environmental settings. Here we outline current best practices in developing, implementing and evaluating SynComs across different systems, including a focus on important ethical considerations for SynCom research.
Collapse
Affiliation(s)
- Elijah C Mehlferber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Bishnu Joshi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Laila P Partida-Martinez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, México
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- San Francisco Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Gibson C, Jauffur S, Guo B, Frigon D. Activated sludge microbial community assembly: the role of influent microbial community immigration. Appl Environ Microbiol 2024; 90:e0059824. [PMID: 38995046 PMCID: PMC11337844 DOI: 10.1128/aem.00598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are host to diverse microbial communities and receive a constant influx of microbes from influent wastewater. However, the impact of immigrants on the structure and activities of the activated sludge (AS) microbial community remains unclear. To gain insight on this phenomenon known as perpetual community coalescence, the current study utilized controlled manipulative experiments that decoupled the influent wastewater composition from the microbial populations to reveal the fundamental mechanisms involved in immigration between sewers and AS-WWTP. The immigration dynamics of heterotrophs were analyzed by harvesting wastewater biomass solids from three different sewer systems and adding to synthetic wastewater. Immigrating influent populations were observed to contribute up to 14% of the sequencing reads in the AS. By modeling the net growth rate of taxa, it was revealed that immigrants primarily exhibited low or negative net growth rates. By developing a protocol to reproducibly grow AS-WWTP communities in the lab, we have laid down the foundational principles for the testing of operational factors creating community variations with low noise and appropriate replication. Understanding the processes that drive microbial community diversity and assembly is a key question in microbial ecology. In the future, this knowledge can be used to manipulate the structure of microbial communities and improve system performance in WWTPs.IMPORTANCEIn biological wastewater treatment processes, the microbial community composition is essential in the performance and stability of the system. This study developed a reproducible protocol to investigate the impact of influent immigration (or perpetual coalescence of the sewer and activated sludge communities) with appropriate reproducibility and controls, allowing intrinsic definitions of core and immigrant populations to be established. The method developed herein will allow sequential manipulative experiments to be performed to test specific hypothesis and optimize wastewater treatment processes to meet new treatment goals.
Collapse
Affiliation(s)
- Claire Gibson
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | - Shameem Jauffur
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | - Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
- Department of Civil and Environmental Engineering, Center for Environmental Health and Engineering, University of Surrey, Surrey, United Kingdom
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Vass M, Székely AJ, Carlsson-Graner U, Wikner J, Andersson A. Microeukaryote community coalescence strengthens community stability and elevates diversity. FEMS Microbiol Ecol 2024; 100:fiae100. [PMID: 39003240 PMCID: PMC11287207 DOI: 10.1093/femsec/fiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Mixing of entire microbial communities represents a frequent, yet understudied phenomenon. Here, we mimicked estuarine condition in a microcosm experiment by mixing a freshwater river community with a brackish sea community and assessed the effects of both environmental and community coalescences induced by varying mixing processes on microeukaryotic communities. Signs of shifted community composition of coalesced communities towards the sea parent community suggest asymmetrical community coalescence outcome, which, in addition, was generally less impacted by environmental coalescence. Community stability, inferred from community cohesion, differed among river and sea parent communities, and increased following coalescence treatments. Generally, community coalescence increased alpha diversity and promoted competition from the introduction (or emergence) of additional (or rare) species. These competitive interactions in turn had community stabilizing effect as evidenced by the increased proportion of negative cohesion. The fate of microeukaryotes was influenced by mixing ratios and frequencies (i.e. one-time versus repeated coalescence). Namely, diatoms were negatively impacted by coalescence, while fungi, ciliates, and cercozoans were promoted to varying extents, depending on the mixing ratios of the parent communities. Our study suggests that the predictability of coalescence outcomes was greater when the sea parent community dominated the final community, and this predictability was further enhanced when communities collided repeatedly.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna J Székely
- Division of Microbial Ecology, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Ulla Carlsson-Graner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
| | - Johan Wikner
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-90187 Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, SE-90571 Hörnefors, Sweden
| |
Collapse
|
4
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
5
|
Liu X, Salles JF. Drivers and consequences of microbial community coalescence. THE ISME JOURNAL 2024; 18:wrae179. [PMID: 39288091 PMCID: PMC11447283 DOI: 10.1093/ismejo/wrae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Microbial communities are undergoing unprecedented dispersion and amalgamation across diverse ecosystems, thereby exerting profound and pervasive influences on microbial assemblages and ecosystem dynamics. This review delves into the phenomenon of community coalescence, offering an ecological overview that outlines its four-step process and elucidates the intrinsic interconnections in the context of community assembly. We examine pivotal mechanisms driving community coalescence, with a particular emphasis on elucidating the fates of both source and resident microbial communities and the consequential impacts on the ecosystem. Finally, we proffer recommendations to guide researchers in this rapidly evolving domain, facilitating deeper insights into the ecological ramifications of microbial community coalescence.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ecologie Microbienne Lyon, Centre National de la Recherche Scientifique (CNRS) UMR5557, Bâtiment Grégoire Mendel, 69100 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Ruomeng B, Meihao O, Siru Z, Shichen G, Yixian Z, Junhong C, Ruijie M, Yuan L, Gezhi X, Xingyu C, Shiyi Z, Aihui Z, Fang B. Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synth Syst Biotechnol 2023; 8:302-313. [PMID: 37122957 PMCID: PMC10130697 DOI: 10.1016/j.synbio.2023.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The past 50 years have witnessed a massive expansion in the demand and application of pesticides. However, pesticides are difficult to be completely degraded without intervention hence the pesticide residue could pose a persistent threat to non-target organisms in many aspects. To aim at the problem of the abuse of pesticide products and excessive pesticide residues in the environment, chemical and biological degradation methods are widely developed but are scaled and insufficient to solve such a pollution. In recent years, bio-degradative tools instructed by synthetic biological principles have been further studied and have paved a way for pesticide degradation. Combining the customized design strategy and standardized assembly mode, the engineering bacteria for multi-dimensional degradation has become an effective tool for pesticide residue degradation. This review introduces the mechanisms and hazards of different pesticides, summarizes the methods applied in the degradation of pesticide residues, and discusses the advantages, applications, and prospects of synthetic biology in degrading pesticide residues.
Collapse
|
7
|
Barbour KM, Barrón-Sandoval A, Walters KE, Martiny JBH. Towards quantifying microbial dispersal in the environment. Environ Microbiol 2023; 25:137-142. [PMID: 36308707 PMCID: PMC10100412 DOI: 10.1111/1462-2920.16270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Kristin M Barbour
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | - Alberto Barrón-Sandoval
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Abstract
The diversity and functional significance of microbiomes have become increasingly clear through the extensive sampling of Earth's many habitats and the rapid adoption of new sequencing technologies. However, much remains unknown about what makes a "healthy" microbiome, how to restore a disrupted microbiome, and how microbiomes assemble. In December 2019, we convened a workshop that focused on how to identify potential "rules of life" that govern microbiome structure and function. This collection of mSystems Perspective pieces reflects many of the main challenges and opportunities in the field identified by both in-person and virtual workshop participants. By borrowing conceptual and theoretical approaches from other fields, including economics and philosophy, these pieces suggest new ways to dissect microbiome patterns and processes. The application of conceptual advances, including trait-based theory and community coalescence, is providing new insights on how to predict and manage microbiome diversity and function. Technological and analytical advances, including deep transfer learning, metabolic models, and advances in analytical chemistry, are helping us sift through complex systems to pinpoint mechanisms of microbiome assembly and dynamics. Integration of all of these advancements (theory, concepts, technology) across biological and spatial scales is providing dramatically improved temporal and spatial resolution of microbiome dynamics. This integrative microbiome research is happening in a new moment in science where academic institutions, scientific societies, and funding agencies must act collaboratively to support and train a diverse and inclusive community of microbiome scientists.
Collapse
|
9
|
Izabel-Shen D, Li S, Luo T, Wang J, Li Y, Sun Q, Yu CP, Hu A. Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns. ISME COMMUNICATIONS 2022; 2:48. [PMID: 37938643 PMCID: PMC9723708 DOI: 10.1038/s43705-022-00129-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The increasing-volume release of micropollutants into natural surface waters has raised great concern due to their environmental accumulation. Persisting micropollutants can impact multiple generations of organisms, but their microbially-mediated degradation and their influence on community assembly remain understudied. Here, freshwater microbes were treated with several common micropollutants, alone or in combination, and then transferred every 5 days to fresh medium containing the same micropollutants to mimic the repeated exposure of microbes. Metabarcoding of 16S rRNA gene makers was chosen to study the succession of bacterial assemblages following micropollutant exposure. The removal rates of micropollutants were then measured to assess degradation capacity of the associated communities. The degradation of micropollutants did not accelerate over time but altered the microbial community composition. Community assembly was dominated by stochastic processes during early exposure, via random community changes and emergence of seedbanks, and deterministic processes later in the exposure, via advanced community succession. Early exposure stages were characterized by the presence of sensitive microorganisms such as Actinobacteria and Planctomycetes, which were then replaced by more tolerant bacteria such as Bacteroidetes and Gammaproteobacteria. Our findings have important implication for ecological feedback between microbe-micropollutants under anthropogenic climate change scenarios.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Tingwei Luo
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Top-down and bottom-up cohesiveness in microbial community coalescence. Proc Natl Acad Sci U S A 2022; 119:2111261119. [PMID: 35105804 PMCID: PMC8832967 DOI: 10.1073/pnas.2111261119] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
In the microbial world, it is common for previously isolated communities to come in contact with one another. This phenomenon is known as community coalescence. Despite it being a key process in the assembly of microbial communities, little is known about the mechanisms that determine its outcomes. Here we present an experimental system that allowed us to study over 100 coalescence events between previously segregated microbiomes. Our results, predicted by a mathematical model, provide direct evidence of ecological coselection: the situation where members of a community recruit one another during coalescence. Our combined experimental and theoretical framework represents a powerful tool to predict the outcomes and interrogate the mechanisms of community coalescence. Microbial communities frequently invade one another as a whole, a phenomenon known as community coalescence. Despite its potential importance for the assembly, dynamics, and stability of microbial consortia, as well as its prospective utility for microbiome engineering, our understanding of the processes that govern it is still very limited. Theory has suggested that microbial communities may exhibit cohesiveness in the face of invasions emerging from collective metabolic interactions across microbes and their environment. This cohesiveness may lead to correlated invasional outcomes, where the fate of a given taxon is determined by that of other members of its community—a hypothesis known as ecological coselection. Here, we have performed over 100 invasion and coalescence experiments with microbial communities of various origins assembled in two different synthetic environments. We show that the dominant members of the primary communities can recruit their rarer partners during coalescence (top-down coselection) and also be recruited by them (bottom-up coselection). With the aid of a consumer-resource model, we found that the emergence of top-down or bottom-up cohesiveness is modulated by the structure of the underlying cross-feeding networks that sustain the coalesced communities. The model also predicts that these two forms of ecological coselection cannot co-occur under our conditions, and we have experimentally confirmed that one can be strong only when the other is weak. Our results provide direct evidence that collective invasions can be expected to produce ecological coselection as a result of cross-feeding interactions at the community level.
Collapse
|