1
|
Jureckova K, Nykrynova M, Slaninova E, Fleuriot-Blitman H, Amstutz V, Hermankova K, Bezdicek M, Mrazova K, Hrubanova K, Zinn M, Obruca S, Sedlar K. Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum. Comput Struct Biotechnol J 2024; 23:2681-2694. [PMID: 39035834 PMCID: PMC11259993 DOI: 10.1016/j.csbj.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Hugo Fleuriot-Blitman
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Véronique Amstutz
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Kristyna Hermankova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine – Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine – Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Mrazova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
2
|
Hernández-Herreros N, Rodríguez A, Galán B, Auxiliadora Prieto M. Boosting hydrogen production in Rhodospirillum rubrum by syngas-driven photoheterotrophic adaptive evolution. BIORESOURCE TECHNOLOGY 2024; 406:130972. [PMID: 38876276 DOI: 10.1016/j.biortech.2024.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Rhodospirillum rubrum is a photosynthetic purple non-sulphur bacterium with great potential to be used for complex waste valorisation in biotechnological applications due to its metabolic versatility. This study investigates the production of hydrogen (H2) and polyhydroxyalkanoates (PHA) by R. rubrum from syngas under photoheterotrophic conditions. An adaptive laboratory evolution strategy (ALE) has been carried out to improve the yield of the process. After 200 generations, two evolved strains were selected that showed reduced lag phase and enhanced poly-3-hydroxybutyrate (PHB) and H2 synthesis compared to the parental strain. Genomic analysis of the photo-adapted (PA) variants showed four genes with single point mutations, including the photosynthesis gene expression regulator PpsR. The proteome of the variants suggested that the adapted variants overproduced H2 due to a more efficient CO oxidation through the CO-dehydrogenase enzyme complex and confirmed that energy acquisition was enhanced through overexpression of the photosynthetic system and metal cofactors essential for pigment biosynthesis.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alberto Rodríguez
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Beatriz Galán
- Microbial & Plant Biotechnology Department, Environmental Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department, Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Godoy MS, Verdú I, de Miguel SR, Jiménez JD, Prieto MA. Exploring Rhodospirillum rubrum response to high doses of carbon monoxide under light and dark conditions. Appl Microbiol Biotechnol 2024; 108:258. [PMID: 38466440 DOI: 10.1007/s00253-024-13079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Environmental concerns about residues and the traditional disposal methods are driving the search for more environmentally conscious processes, such as pyrolysis and gasification. Their main final product is synthesis gas (syngas) composed of CO, CO2, H2, and methane. Syngas can be converted into various products using CO-tolerant microorganisms. Among them, Rhodospirillum rubrum is highlighted for its biotechnological potential. However, the extent to which high doses of CO affect its physiology is still opaque. For this reason, we have studied R. rubrum behavior under high levels of this gas (up to 2.5 bar), revealing a profound dependence on the presence or absence of light. In darkness, the key variable affected was the lag phase, where the highest levels of CO retarded growth to more than 20 days. Under light, R. rubrum ability to convert CO into CO2 and H2 depended on the presence of an additional carbon source, such as acetate. In those conditions where CO was completely exhausted, CO2 fixation was unblocked, leading to a diauxic growth. To enhance R. rubrum tolerance to CO in darkness, a UV-accelerated adaptive laboratory evolution (UVa-ALE) trial was conducted to isolate clones with shorter lag phases, resulting in the isolation of clones 1.4-2B and 1.7-2A. The adaptation of 1.4-2B was mainly based on mutated enzymes with a metabolic function, while 1.7-3A was mostly affected at regulatory genes, including the anti-repressor PpaA/AerR. Despite these mutations having slight effects on biomass and pigment levels, they successfully provoked a significant reduction in the lag phase (-50%). KEYPOINTS: • CO affects principally R. rubrum lag phase (darkness) and growth rate (light) • CO is converted to CO2/H2 during acetate uptake and inhibits CO2 fixation (light) • UVa-ALE clones showed a 50% reduction in the lag phase (darkness).
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| | - Irene Verdú
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Present address: Drexel University, Philadelphia, Pennsylvania, USA
| | - Santiago R de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - José D Jiménez
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|