1
|
Behnke J, Cai Y, Gu H, LaRoche J. Short-term response to iron resupply in an iron-limited open ocean diatom reveals rapid decay of iron-responsive transcripts. PLoS One 2023; 18:e0280827. [PMID: 36693065 PMCID: PMC9873189 DOI: 10.1371/journal.pone.0280827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
In large areas of the ocean, iron concentrations are insufficient to promote phytoplankton growth. Numerous studies have been conducted to characterize the effect of iron on algae and how algae cope with fluctuating iron concentrations. Fertilization experiments in low-iron areas resulted primarily in diatom-dominated algal blooms, leading to laboratory studies on diatoms comparing low- and high-iron conditions. Here, we focus on the short-term temporal response following iron addition to an iron-starved open ocean diatom, Thalassiosira oceanica. We employed the NanoString platform and analyzed a high-resolution time series on 54 transcripts encoding proteins involved in photosynthesis, N-linked glycosylation, iron transport, as well as transcription factors. Nine transcripts were iron-responsive, with an immediate response to the addition of iron. The fastest response observed was the decrease in transcript levels of proteins involved in iron uptake, followed by an increase in transcript levels of iron-containing enzymes and a simultaneous decrease in the transcript levels of their iron-free replacement enzymes. The transcription inhibitor actinomycin D was used to understand the underlying mechanisms of the decrease of the iron-responsive transcripts and to determine their half-lives. Here, Mn-superoxide dismutase (Mn-SOD), plastocyanin (PETE), ferredoxin (PETF) and cellular repressor of EA1-stimulated genes (CREGx2) revealed longer than average half-lives. Four iron-responsive transcripts showed statistically significant differences in their decay rates between the iron-recovery samples and the actD treatment. These differences suggest regulatory mechanisms influencing gene transcription and mRNA stability. Overall, our study contributes towards a detailed understanding of diatom cell biology in the context of iron fertilization response and provides important observations to assess oceanic diatom responses following sudden changes in iron concentrations.
Collapse
Affiliation(s)
- Joerg Behnke
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| | - Yun Cai
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hong Gu
- Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (JB); (JL)
| |
Collapse
|
2
|
Nef C, Madoui MA, Pelletier É, Bowler C. Whole-genome scanning reveals environmental selection mechanisms that shape diversity in populations of the epipelagic diatom Chaetoceros. PLoS Biol 2022; 20:e3001893. [PMID: 36441816 PMCID: PMC9731442 DOI: 10.1371/journal.pbio.3001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/08/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Diatoms form a diverse and abundant group of photosynthetic protists that are essential players in marine ecosystems. However, the microevolutionary structure of their populations remains poorly understood, particularly in polar regions. Exploring how closely related diatoms adapt to different environments is essential given their short generation times, which may allow rapid adaptations, and their prevalence in marine regions dramatically impacted by climate change, such as the Arctic and Southern Oceans. Here, we address genetic diversity patterns in Chaetoceros, the most abundant diatom genus and one of the most diverse, using 11 metagenome-assembled genomes (MAGs) reconstructed from Tara Oceans metagenomes. Genome-resolved metagenomics on these MAGs confirmed a prevalent distribution of Chaetoceros in the Arctic Ocean with lower dispersal in the Pacific and Southern Oceans as well as in the Mediterranean Sea. Single-nucleotide variants identified within the different MAG populations allowed us to draw a landscape of Chaetoceros genetic diversity and revealed an elevated genetic structure in some Arctic Ocean populations. Gene flow patterns of closely related Chaetoceros populations seemed to correlate with distinct abiotic factors rather than with geographic distance. We found clear positive selection of genes involved in nutrient availability responses, in particular for iron (e.g., ISIP2a, flavodoxin), silicate, and phosphate (e.g., polyamine synthase), that were further supported by analysis of Chaetoceros transcriptomes. Altogether, these results highlight the importance of environmental selection in shaping diatom diversity patterns and provide new insights into their metapopulation genomics through the integration of metagenomic and environmental data.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Mohammed-Amin Madoui
- Service d’Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, Dijon, 21000, France
| | - Éric Pelletier
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Metabolic Genomics, Genoscope, Institut de Biologie François-Jacob, CEA, CNRS, Université Evry, Université Paris Saclay, Evry, France
| | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
3
|
Rahimzadeh-Karvansara P, Pascual-Aznar G, Bečková M, Komenda J. Psb34 protein modulates binding of high-light-inducible proteins to CP47-containing photosystem II assembly intermediates in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2022; 152:333-346. [PMID: 35279779 PMCID: PMC9458560 DOI: 10.1007/s11120-022-00908-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxiliary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all stages of PSII assembly.
Collapse
Affiliation(s)
- Parisa Rahimzadeh-Karvansara
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Guillem Pascual-Aznar
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Martina Bečková
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Josef Komenda
- Laboratory of Photosynthesis, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic.
| |
Collapse
|
4
|
Malych R, Stopka P, Mach J, Kotabová E, Prášil O, Sutak R. Flow cytometry-based study of model marine microalgal consortia revealed an ecological advantage of siderophore utilization by the dinoflagellate Amphidinium carterae. Comput Struct Biotechnol J 2021; 20:287-295. [PMID: 35024100 PMCID: PMC8718654 DOI: 10.1016/j.csbj.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022] Open
Abstract
Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.
Collapse
Key Words
- (s)PLS-DA, (sparse) partial least squares discriminant analysis
- AUC, area under curve
- Amphidinium carterae
- AtpE, ATP synthase
- BCS, bathocuproinedisulfonic acid disodium salt
- CREG1, cellular repressor of E1A stimulated genes 1
- DFOB, desferrioxamine B
- EDTA, ethylenediaminetetraacetic acid
- ENT, enterobactin
- FACS, fluorescence-activated cell sorting
- FBAI, fructose-bisphosphate aldolase I
- FBAII, fructose-bisphosphate aldolase II
- FBP1, putative ferrichrome-binding protein
- FOB, ferrioxamine B
- Flow cytometry
- ISIP, iron starvation induced protein
- Iron
- LHCX, light-harvesting complex subunits
- LL, long-term iron limitation
- LR, iron enrichment
- Marine microalgae
- NBD, nitrobenz-2-oxa-1,3-diazole
- NPQ, nonphotochemical quenching
- PAGE, polyacrylamide gel electrophoresis
- PSI, photosystem I
- PSII, photosystem II
- PetA, cytochrome b6/f
- Proteomics
- PsaC, photosystem I iron-sulfur center
- PsaD, photosystem I reaction center subunit II
- PsaE, photosystem I reaction center subunit IV
- PsaL, photosystem I reaction center subunit XI
- PsbC, photosystem II CP43 reaction center protein
- PsbV, cytochrome c-550
- RR, long-term iron sufficiency
- SOD1, superoxide dismutase [Cu-Zn]
- Siderophores
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| | - Eva Kotabová
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences, Centrum Algatech, Trebon, Czech
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech
| |
Collapse
|